Nechako River Geomorphology and Sediment Transport

Nechako River Water Engagement Initiative

Presentation Overview

- 1. Watershed overview
 - Geomorphic history
 - Channel morphology changes
 - Hydrology changes

2. Vanderhoof reach

- Anticipated conditions prior to flow diversion
- Specific gauge analysis
- Hydrodynamic conditions
- Substrate conditions

northwest hydraulic consultants

northwes

Geomorphology Overview

- Relatively low gradient system
- Nechako plains formed at end of last glaciation and deposited fines across landscape (Armstrong and Tipper, 1948; Holland, 1976)
- Today these plains are used for agricultural and forestry

northwest hydraulic consultants

Cheslatta Fan Avulsion

- Avulsion mechanics, history and sediment quantity estimates provided in Rood and Neill (1987) and HayCo (2000)
- Estimated sediment eroded and deposited into the upper river using photogrammetry and GIS
- 1.31 Mm³ eroded with 0.3 Mm³ deposited between Scour Hole lake and Cheslatta Falls
- Primarily fine gravels, sands and silts entrained into upper river.

Summary of Nechako System

- Hydrograph has changed
- Channel is becoming smaller where there are bar features
- Historically there was a limited amount of sediment production upstream of dam
- Appears to be lots of sand, but there are lots of sand bed reaches

1953 airphoto (very low Q) Reservoir was being filled Planform is not dominated by gravel features

Near lower patch

Channel Slope Change

Downstream distance (m)

Water Surface Slope

northwest hydraulic consultants

Downstream distance (m)

Contemporary hydrodynamic conditions

- Vanderhoof Reach does not have 'typical' hydrodynamic conditions
- Zone of high velocity moves as discharge moves
- Likely have sand transport during almost all flows

Substrate in Vanderhoof Reach

northwest hydraulic consultants

Apparent backwatering upstream of bridge

How the hydraulic gradient changes with discharge

Upstream hydraulics controlled by channel geometry

northwest hydraulic consultants

Upstream hydraulics controlled by channel roughness

Substrate Conditions

Underwater images

Underwater Camera Observations

Underwater Camera Observations

- Large variation in substrate condition
- Upper site has some natural substrate that appears good from the surface

Substrate Conditions Summary

- Cobbles at upstream end of reach
- Gravels at downstream end of reach
- Sand moving as sheets over stable substrate at some locations
- Outside corner of bends remain clear of fines

Suggest fines moving on inside corners

Bedload Sampling

How much bedload is there?

nhc

northwest hydraulic consultants

Bedload transport downstream of the bridge

Sediment Transport Summary

Year	Bedload sediment transport (m ³ /annum)	
	Upper Site	Lower Patch
2013	1,050	3,500
2014	750	2,750
2015	9,250	3,050
Average	3,700	3,100

No evidence that cobbles move during floods

Specific Gauge Analysis Overview

Specific Gauge Analysis Overview

08JC001 - NECHAKO RIVER AT VANDERHOOF - DD: 1 Rating: 0000

Specific Gauge Analysis Overview

northwest hydraulic consultants

From Weatherly and Jakob (2014)

Specific Gauge Analysis

08JC001 - NECHAKO RIVER AT VANDERHOOF - DD: 1 F

Alternative Specific Gauge Analysis

Flow measurements plotted against a single rating curve

Vanderhoof Specific Gauge

Flow measurements plotted against a single rating curve

Thank you

Clients who have supported this work: White Sturgeon Recovery Initiative (MFLNRORD) and RTA

People who have made it possible include: NHC field technicians and professionals, especially Simon Gauthier-Fauteux and Barry Chilibeck Carrier Sekani Tribal Council Nechako White Sturgeon Conservation Center Freshwater Fisheries Society of BC Wayne Salewski District and Community of Vanderhoof Brett Eaton and UBC Geography EDI Avison Management Services

