

MODELING THE NECHAKO RESERVOIR USING 2D HYDRODYNAMIC MODEL

Samah Larabi, Markus Schnorbus, Francis Zwiers

November 20, 2019

CONTEXT / OBJECTIVES

- Implementing a hydrodynamic model for the Nechako Reservoir.
- Producing future scenarios for water level and temperature within the Nechako Reservoir.
- Assessing the climate change impact on the Reservoir storage and water temperature.

CE-QUAL-W2 HYDRODYNAMIC MODEL

- 2-D laterally averaged, longitudinal/Vertical Hydrodynamic and water quality model.
- Can be applied for rivers, lakes, reservoirs or entire systems of reservoirs and river segments.
- It supports:
 - Multiple inflows and outflows
 - Ice cover calculations
 - Multiple hydraulic structures (dams, spillways, gates, pipes,....)
 - Dynamic shading
 - Reservoir Automatic vertical port selection
 - Selective withdrawal calculations
 -
- Required forcing inputs and boundary conditions:
 - Bathymetry
 - Met data: Tair, Tdew, Wind speed, Wind direction, Cloud Cover, Solar radiation (optional)
 - Flow data : inflows, inflows temperature, outflows
- Model is open source and supported by the Water Quality Research group, Department of Civil and Environmental Engineering, Portland State University (Cole and Wells, 2018)

CE-QUAL-W2 HYDRODYNAMIC MODEL

Bathymetry

- Computational grid is function of :
 - Longitudinal spacing Δx (segment length)
 - Vertical spacing Δz (i.e. Layer height)
 - Average cross-sectional width (i.e. cell width)
 - Water body slope
- Model discretizes the waterbody into branches which is an ensemble of model segments.

Example of CE-QUAL-W2 model Grid

METEROLOGICAL FORCING

- Met forcing are a combination of PNWNAmet data and reanalysis ERA5 data.
- PNWNAmet is gridded observed data of daily Tmin, Tmax, Precip at a resolution of 0.0625° and wind speed from 20CR reanalysis (Werner et al. (2019)).

Variable	Periods		
	1945-1979	1980-2012	2013-2018
Primary Variables			
AIR_TEMP		quantile-map	bias-corrected
PREC		quantile-map	bias-corrected
SHORTWAVE	bias-corrected	quantile-map	
LONGWAVE	bias-corrected	quantile-map	
PRESSURE	bias-corrected	quantile-map	
DENSITY	bias-corrected	quantile-map	
VP	bias-corrected	quantile-map	
WIND	bias-corrected	quantile-map	
WIND_DIR			
Additional Variables (estimated from primary variables)			
REL_HUMID			
TDEW			

Data sources, availability and processing steps by period

Hydrologic model set up

- Variable infiltration Model (VIC-GL) coupled to the River Basin stream temperature Model (RBM).
- Calibration of the VIC-GL- RBM on the major tributaries of the Nechako.
- Flows data available from 1992 to 1995 except TAHOL and WHITE stations (available up to 1952).
- Inflow water temperature is available from late June to mid October 1994 (Triton, 1994).

VIC-GL- RBM calibration stations

BATHYMETRY DATA

Bathymetry is estimated from :

- Contours produced from a DTM created using air photos taken between 1946 and 1947.
- Bathymetry map surveyed in 1951.
- Measured bathymetry.

BATHYMETRY DATA

Bathymetry is estimated from :

- Contours produced from a DTM created using air photos taken between 1946 and 1947
- Bathymetry map surveyed in 1951
- Measured bathymetry.

CE-QUAL-W2 set up

CE-QUAL-W2 Computational Grid

- Nechako reservoir is set up as a 6 inter-connected waterbodies with a vertical grid spacing of 2.2m and horizontal grid spacing of approx. 1km
- Each waterbody is a set of model branches driven by the same meteorological forcing

CE-QUAL-W2 model discretization of the Nechako Reservoir

Wind speed variability over the Nechako Reservoir

3-hourly Wind speed Average (January, 1945-2018)

3-hourly Wind speed Average (August, 1945-2018)

CE-QUAL-W2 Boundary Conditions

CE-QUAL-W2 set up

CE-QUAL-W2 Computational Grid Validation

- Evaporation and precipitation are not included in the water balance.
- Average water balance correction is -1.29 m³/s.

Observed and Simulated Reservoir Level

NEXT STEPS

• Understanding the contribution and distribution of precipitation and inflows at identified stations to the Reservoir storage.

Observed and Simulated Reservoir Level

NEXT STEPS

- Calibrate VIC-GL-RBM and CE-QUAL-W2/GLM simultaneously via a multiobjective approach including reservoir level and water temperature:
 - Calibration period late June to mid October 1994 using Triton stations
 - Validation using RT stations 2016-2017

Water Temperature Profile Stations

NEXT STEPS

- Calibrate VIC-GL-RBM and CE-QUAL-W2/GLM simultaneously via a multiobjective approach including reservoir level and water temperature:
 - Calibration period late June to mid October 1994 using Triton stations(Triton, 1994)
 - Validation using RT stations 2016-2017
- Boundary outflow conditions:
 - Model the gates in CE-QUAL-W2
 - Future scenarios of outflows (powerhouse)

GENERAL LAKE MODEL

- 1D open source Hydrodynamic model resolving vertical series of layers (Hipsey et al. 2019)
- It supports:
 - Multiple inflows and outflows
 - Ice cover calculations
- Required forcing inputs and boundary conditions:
 - **Bathymetry** required as surface elevation relationship
 - Met data: Tair, Relative humidity, Wind speed, ,

Cloud Cover, Shortwave Solar radiation, longwave Solar radiation

• Flow data : inflows, inflows temperature, outflows

GLM Schematic domain

GLM set up

- Surface-Area relationship is estimated from bathymetry used by CE-QUAL-W2 model.
- Meteorological forcing inputs are extracted at the spillway station.
- Supplied inflows depends on the simulated inflows by VIC-GL compared to total inflows.

References

- Cole, T.M., and Wells, S. A. (2018) "CE-QUAL-W2: A two-dimensional, laterally averaged, hydro-dynamic and water quality model, version 4.1," Department of Civil and Environmental Engineer-ing, Portland State University, Portland, OR.
- Hipsey, M.R., Bruce, L.C., Boon, C. et al. 2017. A General Lake model (GLM 2.4) for linking with high-frequency sensor data from the Global lake Ecological Observatory Network (GLEON). Geosci. Model Dev. Discuss., <u>https://doi.org/10.5194/gmd-2017-257</u>.
- Hipsey, M.R., Bruce, L.C., Boon, C. et al. 2019. A General Lake model (GLM 3.0) for linking with high-frequency sensor data from the Global lake Ecological Observatory Network (GLEON). Geosci. Model Dev., 12, 473–523, 2019.
- Triton Environmental Consultants, 1995. Nechako Reservoir Additional Data Collection, Final Report. Prepared for Alcan Smelters and Chemicals Ltd, Vancouver BC. 43pp plus appendices.
- Werner, A. T., M. A. Schnorbus, R. R. Shrestha, A. J. Cannon, F. W. Zwiers, G. Dayon, and F. Anslow, 2019: A long-term, temporally consistent, gridded daily meteorological dataset for northwestern North America. Sci. Data, 6, 180299.