
SDM Process Steps

WEI Meeting 26 - Wednesday, April 6, 2022

Michael Harstone, Compass Resource Management (SDM)

What is Structured Decision Making?

WEI Process Steps

Timeline

Step 1 (2017)

Pre-engagement on methods and topics for the water engagement

Step 2 (January – March 2018)

Report out on Step 1 and develop plan for focused Water Engagement Initiative.

Step 3 (March – July 2018)

Launch search for independent facilitator (EDI Environmental Dynamics Inc. selected)

Step 4

We are here!
Broad based
engagement is
underway to gain an
understanding of
interests to be
addressed. Includes
public meetings, small
group workshops and
one on one dialogue.

Step 5 (Future stage)

Develop options to address interests raised in Step 4.

Step 6 (Future stage)

Report back and present draft options for further refinement. Includes public meetings, small group workshops and one on one dialogue.

Step 7 (Future stage)

Finalise options and develop implementation plan, including regulatory approval where required.

Current WEI Workplan

WEI Process Steps

Timeline

Step 1 (2017)

Pre-engagement on methods and topics for the water engagement

Step 2 (January – March 2018)

Report out on Step 1 and develop plan for focused Water Engagement Initiative.

Step 3 (March – July 2018)

Launch search for independent facilitator (EDI Environmental Dynamics Inc. selected)

Step 4

We are here!
Broad based
engagement is
underway to gain an
understanding of
interests to be
addressed. Includes
public meetings, small
group workshops and
one on one dialogue.

Step 5 (Future stage)

Develop options to address interests raised in Step 4.

Step 6 (Future stage)

Report back and present draft options for further refinement. Includes public meetings, small group workshops and one on one dialogue.

Step 7 (Future stage)

Finalise options and develop implementation plan, including regulatory approval where required.

Current WEI Workplan

Climate Studies / Modeling

Aligning Sturgeon Recovery Work with WUP

Nechako First Nations Info Sharing & Engagement

STMP Work

Ongoing WEI Work (SSWG, PM Development, alterns, etc.)

WEI Process Steps

Timeline

Step 1 (2017)

Pre-engagement on methods and topics for the water engagement

Step 2 (January – March 2018)

Report out on Step 1 and develop plan for focused Water Engagement Initiative.

Step 3 (March – July 2018)

Launch search for independent facilitator (EDI Environmental Dynamics Inc. selected)

Step 4

We are here!
Broad based
engagement is
underway to gain an
understanding of
interests to be
addressed. Includes
public meetings, small
group workshops and
one on one dialogue.

Step 5 (Future stage)

Develop options to address interests raised in Step 4.

Step 6 (Future stage)

Report back and present draft options for further refinement. Includes public meetings, small group workshops and one on one dialogue.

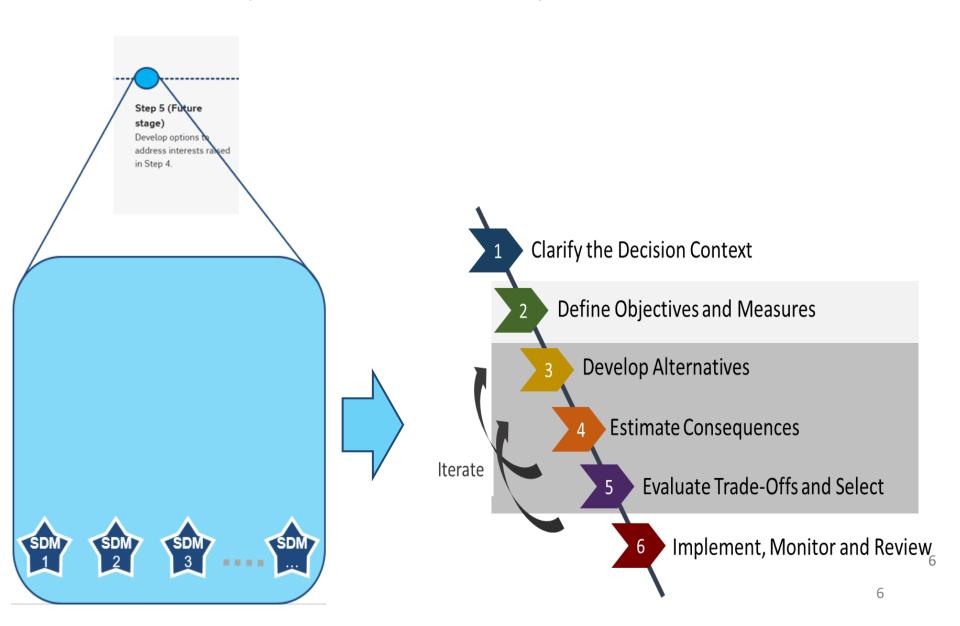
Step 7 (Future stage)

Finalise options and develop implementation plan, including regulatory approval where required.

Current WEI Workplan

Climate Studies / Modeling

Aligning Sturgeon Recovery Work with WUF

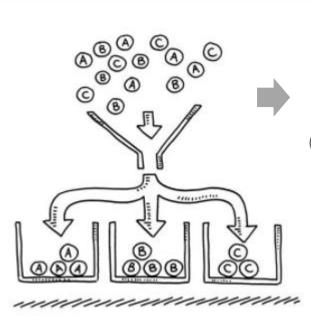

Nechako First Nations Info Sharing & Engagement

STMP Work

Ongoing WEI Work (SSWG, PM Development, alterns, etc.

Collaborative Development and Evaluation of Operational Flow Alternatives

Collaborative Development and Evaluation of Operational Flow Alternatives



Define Objectives and Measures

Issues Scoping & Characterization

Issues sorted & organized

(e.g., sensitive to operations & water mgt)

Health of the river

Fish

- Nechako Reservoir Fish
- Murray-Cheslatta Fish
- Nechako River Anadromous Fish

Wildlife

- Nechako Reservoir Caribou
- Nechako Reservoir Moose
- Nechako Reservoir Waterfowl & ground nesting birds
- Nechako Reservoir Ospro
- Nechako Reservoir Ας 'c mam (Otter, muskrat, beaver)
- Nechako River Beavers
- Nechako River Waterfowl & ground nesting birds

Human Health

Nechako Reservoir - Water quality

Culture & Heritage

- Murray-Cheslatta Gravesites
- Salmon harvest (Nechako River)
- Flooding & Erosion
- Nechako Reservoir Bank Erosion
- Murray-Cheslatta Bank Erosion
- NE Private property flooding &
- echa River ... nent transport
- hak aver Backwatering

Recreation & Navigation

- Nechako Reservoir Boat docks & launches
- Nechako Reservoir Dead trees
- Nechako Reservoir Submerged hazards
- Nechako Reservoir Beaches
- Nechako River Float planes and canoes
- Nechako River Hiking trails

RT Operations

- Revenue
- Operational flexibility

Collaborative Development and Evaluation of Operational Flow Alternatives

Define Objectives and Measures

Objective	Performance Measure	Units
Environment - River		
Fish Passage	Adult summer CHK migration (10%tile)	HSI
Fish Passage	Adult fall CHK migration (10%tile)	HSI
Lateral Connectivity	Side channel connectivity (10th %tile)	%
Rearing	Steelhead parr (10th %tile)	HSI
Rearing	Chinook fry (10th %tile)	HSI
Spawning	Early Steelhead incubation (10%tile)	HSI
Environment - Lake		
Vancouver Lamprey	Lamprey rearing habitat (Scale 1-6)	#
Littoral Productivity	Littoral rearing habitat	#
Industry and Commercial		
Catalyst Paper	Impacted operations days	days/yr
Agriculture	Placeholder	
Commercial Fisheries	See fish PMs	
Lakefront Properties		
Flooding and innundation	Max High Water Event - Mar 1 to Apr 30	meters
Private Property Lkfrnt Areas	Frontage length - un-vegetated, mod slope	meters
Municipal		
Community Water Supply	Intake pumping cap Town of Lake Cowichar	days/yr
Community Water Supply	Intake invert El Town of Lake Cowichan	days/yr
Waste Water Dilution	Effl dilution ratio (200:1) – Upper River	days/yr
Recreation and Tourism		
Beach Use Areas - Lake	Beach user days - un-vegetated, steep slope	wt days
Boat Access/Navigtn-Lake	Decrease in dock use days	days
Boating & Tubing - River	Decrease in river boating days	days
Lake Aesthetics	Visual Quality	#
Water Management		
Capital Costs	Capital costs	M\$
Operational Costs	AVG Operational costs (over 10yrs)	M\$

Health of the river

Fish

- Nechako Reservoir Fish
- Murray-Cheslatta Fish
- Nechako River Anadromous Fish

Wildlife

- Nechako Reservoir Caribou
- Nechako Reservoir Moose
- Nechako Reservoir Waterfowl & ground nesting birds
- Nechako Reservoir Ospro
- Nechako Reservoir Ας ic mam
 (Otter, muskrat, beaver)
- Nechako River Beavers
- Nechako River Waterfowl & ground nesting birds

Human Health

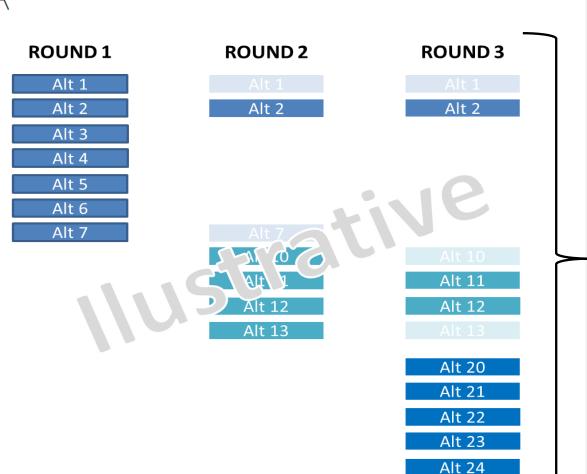
Nechako Reservoir - Water quality

Culture & Heritage

- Murray-Cheslatta Gravesites
- Salmon harvest (Nechako River)
- Flooding & Erosion
- Nechako Reservoir Bank Erosion
- Murray-Cheslatta Bank Erosion
- Ne Γ Municipal flooding
- Ne
 Private property flooding &
- acha Rivernent transport
- hak aver Backwatering

Recreation & Navigation

- Nechako Reservoir Boat docks & launches
- Nechako Reservoir Dead trees
- Nechako Reservoir Submerged hazards
- Nechako Reservoir Beaches
- Nechako River Float planes and canoes
- Nechako River Hiking trails


RT Operations

- Revenue
- Operational flexibility

Collaborative Development and Evaluation of Operational Flow Alternatives

Example Menu

- SLS Flow Releases (e.g., monthly targets)
 - +/- 0cms
 - → +/- 5cms
 - → +/- 10cms
 - □ +/- ... etc.
- Reservoir Targets (e.g., monthly)
 - □ 0m
 - □ +/- 0.15m

 - 7 / ... vtc
- Fisheries Flows Targets
 - ☐ STMP
 - ☐ Murray Cheslatta
 - Nechako River
 - ☐ Etc.
- Other operational changes
 - Ramp rates
 - Kemano diversion
 - ☐ Etc.

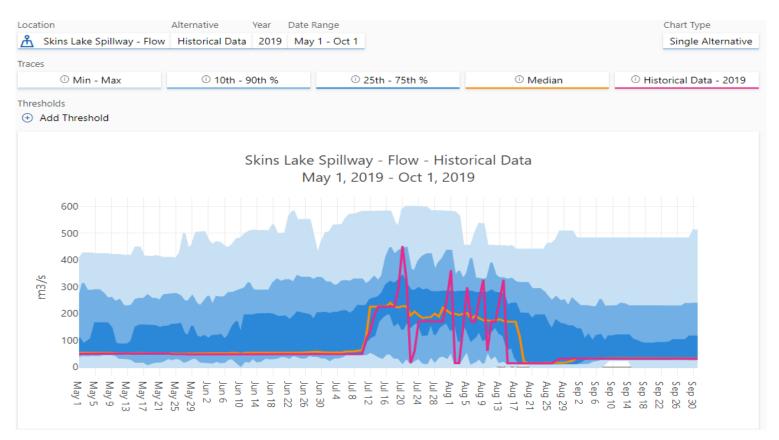
Collaborative Development and Evaluation of Operational Flow Alternatives

Estimating Consequences

Stepped Evaluation Approach:

Hydrological Modeling

- Review changes in hydrological conditions (i.e., water levels and flows)
- 2. Review performance measure values
- Review supplemental information



Deliberative & Structured
Assessment of Flow
Alternatives

Collaborative Development and Evaluation of Operational Flow Alternatives

HydroViz Interactive and comparative hydrographs

Collaborative Development and Evaluation of Operational Flow Alternatives

Consequence Table Reviewing PM Values

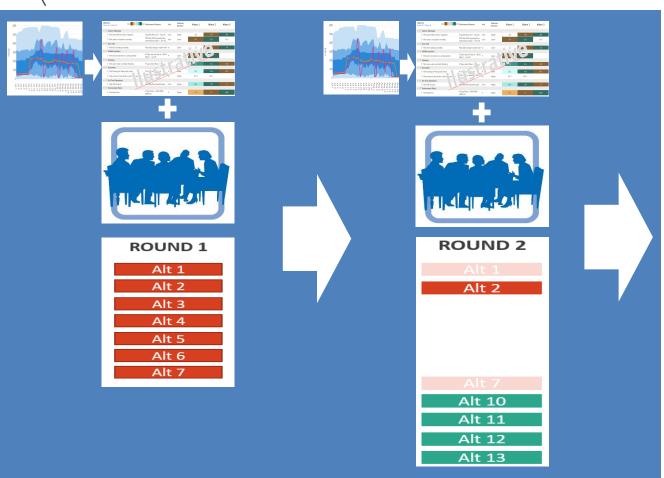
Objective Expand All Collapse All	st Performance Measure	Unit	Preferred Direction	Altern 1	Altern 2	Altern 3				
✓ ○ Salmon (Nechako)										
O Min temp effects salmon migration	Avg daily flow (Jul 1 - Sep 30)	m3/s	Higher	229	176	291				
O Min salmon incubation mortality	Diff. betw AVG spawning flow and minimum (Sep 1 - Oct 15)	m3/s	Lower	137	25.5	81.9				
∨ ○ River Fish										
 Min fish stranding mortality 	Max daily change in water level	m	Lower	.22		.14				
∨ ○ Wildlife (caribou)										
O Min land connections to calving islands	# Days reservoir elev is < 852m (May 1 - Jun 30)	#	Lower	48.						
∨ ○ Flooding	∨ ○ Flooding									
 Min open-water, overbank flooding 	# Days where flows >	V		5.3	2.6	31.0				
∨ ○ Recreation										
Min flooding of hiking trails (river)	# Da ow. orrans	#	Lower	35.2	16.0	74.2				
O Max access to boat docks / launch rese)	VG rv oir eleva (Ma.	m	Higher	851.7	851.7					
∨ ○ Rio Tinto Operations										
O Max RTA revenue	AVG daily flow (powerhouse)	m3/s	Higher	86.4	118	0				
✓ ○ Environment (River)										
O Flushing Flows	# Days flows > 200% MAD (468cms)	#	Higher	15.2	7.7	46.8				

Collaborative Development and Evaluation of Operational Flow Alternatives

Supplemental Analysis (as carried out and/or reviewed by TWG)

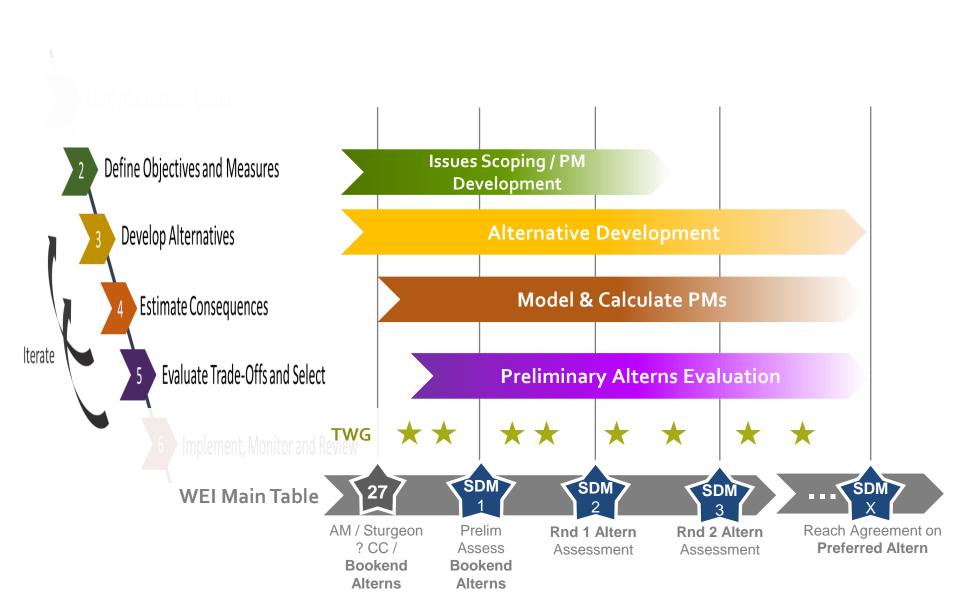
Collaborative Development and Evaluation of Operational Flow Alternatives

Implement, Monitor and Review



Collaborative Development and Evaluation of Operational Flow Alternatives

Evaluate Trade-Offs (and reaching agreement)



Collaborative Development and Evaluation of Operational Flow Alternatives

Collaborative Development and Evaluation of Operational Flow Alternatives

Nechako Water Engagement Initiative

Structuring & Sequencing

Bookend Alternatives

A word or two on Bookend Alternatives

A word or two on Bookend Alternatives

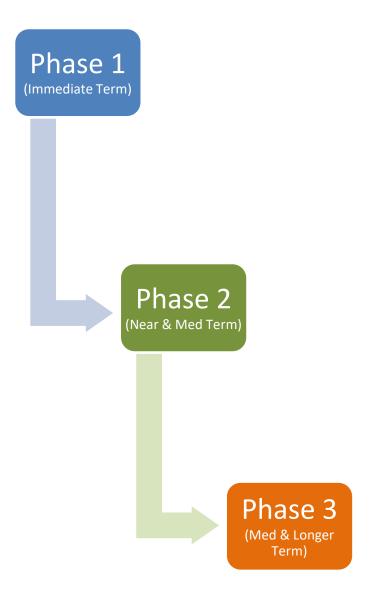
Purpose:

- To explore and better understand the opportunities, challenges and constraints of the hydrology flowing into and out of the Nechako reservoir
- To further scope out water uses and interests and identify which may be most sensitive (+/-) to potential operational flow changes
- To test out the preliminary performance measures and how well they are doing characterizing potential effects
- To gain insight into the performance of different potential flow alternatives in order to develop creative and improved flow alternatives
- To gain insight into each others' values and identify which flow alternatives may
 offer the best path to reaching consensus on a preferred flow alternative

A word or two on Bookend Alternatives

Characteristics of Developing Bookends:

Generally, theme based according to a particular water use interest As such,


- THEY ARE NOT designed to be acceptable but should be considered a starting point to begin the exploration of flows alternatives
- THEY ARE designed as a basis to learn from in order to build the next round of flow alternatives that are multi-interest focused

Structure and Sequencing – Bookend Alterns

Context:

- Operational flow alternatives from Rio Tinto's water control facilities are complex and complicated.
- Water management and flow releases are based on existing water licenses, flow related agreements and may be linked with other potential future regulations and legislation
- RT's operations are also influenced through flow targets that have been adopted over the years to mitigate and lessen impacts
- Water management and flow releases are also inherently tied to the hydrology on any given year and will be significantly affected by future climate changes
- New initiatives and water management projects may also provide opportunities that fundamentally affect current and future operations
- All these factors influence the sequence and structure for developing bookends

Phase 1 Flow Alternatives

 Flow alternatives that Rio Tinto could unilaterally make within the immediate term (e.g., next calendar year) with notification to regulators, First Nations and stakeholders with time to undertaken any internal assessments that may need to be carried out

(i.e., changes are permitted within their current authorized operations)

Approx Implementation Timeline: 0 to 2 years

(once decided, how long to implement changes)

 Could be implemented once any needed assessments and/or notifications are completed

Some example operational levers:

- Re-distributing the current AWA across the monthly flow releases from SLS (e.g., more naturalized, increase min base flows)
- Changing ramping rates (e.g., at end of STMP)
 Note. Proposed changes would be within the current water budget for the Nechako River

Phase 2 Flow Alternatives

• Flow alternatives that would require Rio Tinto to seek some form of approval / authorization(s) according to their existing water license and/or flow related agreements and/or commitments with First Nations.

Approx Implementation Timeline: 2 to 4 years

 Could be implemented once any needed assessments, approvals and any consultations are completed.

Some example operational levers:

- Changes to the STMP flow release schedule and/or cooling targets.
- Changes / increases to current min or max monthly flow targets that have been agreed to from SLS (e.g., AWA).
- Establish different flow targets at downstream points on the²⁶ system (e.g., Nechako River)

Phase 2 (Near – Med Term

Phase 3
(Med & Longer Term)

Phase 3 Flow Alternatives

 Combination of new water management facilities (mitigation / enhancement projects) and potential changes to flow releases to the Nechako River to maintain and/or improve conditions related to key water uses.

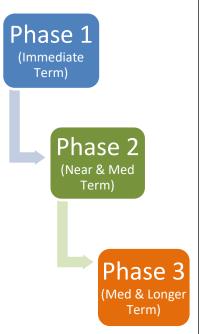
Approx Implementation Timeline: 4 to 7 years

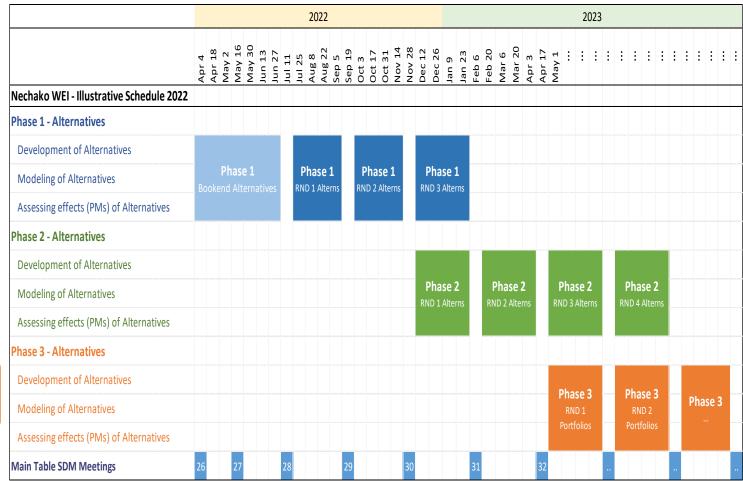
 Depends on the project and the corresponding approval process requirements, but generally these are likely implementable in the medium term based on necessary approvals, EAs, and consultation requirements being carried out.

Some example operational levers:

- Water release facility at Kenney Dam
- Options for increasing flexibility of reservoir management
- New flow release schedule at SLS and at any new release structure.
- Other non-flow mitigation works to address water management impacts from the facilities

Hold on...


So what does this look like in practice and over what period of time?



Phase 2 (Near & Med Term)

> Phase 3 (Med & Longer Term)

Building Phase 1 Bookend Alternatives

- Some illustrative ideas towards developing bookend alternatives
- They are meant to be "illustrative" and provide a cross section of the nature and type of bookends that could be developed
- Over next month Ecofish working with the TWG will develop some preliminary ideas for review and discussion at our next Main Table Meeting to be held in May
- NOTE: The TWG reviewed the sequencing and preliminary
 structuring of some bookend alternatives at their meeting last week

Illustrative Ideas for Bookend Alternatives

	Altern 1	Altern 2	Altern 3	Altern 4	Altern 5	Altern 6	Altern 7	Reference (Unregulated
Primary Purpose	Status Quo	Nechako River	Nechako River	Murray-Cheslatta	Reservoir	Reservoir	Murray-Cheslatta & Nechako River	Flows) To better understand
	reference to explore the	Aquatic Species & Ecosystems	Sockeye	Aquatic Species & Ecosystems	Wildlife	Aquatic Species & Ecosystems	Flood Mitigation	hydrology and the context of the current
	benefits and costs of making flow changes	Provide a more naturalized hydrograph ("freshet") and promote ecosystem functions that benefit a range of aquatic species	Lower STMP temperature targets (18°c or 19°c) for sockeye migration	Provide a more naturalized hydrograph (flow variability) and promote ecosystem functions that benefit a range of aquatic species.	Note. Alternate wildlife objectives could be (1) maintain caribou calving islands, (5) maintain connectivity wet ands to riparian areas)	Maximize reservoir productivity	Minimize flooding of Cheslatta gravesites. Minimize overland flooding at Vanderhoof	water control facilities
Operational Changes / Targets	None	E.g., during high inflow years, release "extra" water coinciding with Nautley or Stuart freshet (rather than releasing in the fall,	TBD E.g., increase SLS discharge between July 20 and Aug 20.	E.g., revise the range of SLS flow extremes and ramping rates through STMP and other periods	TBD E.g., delay reservoir level increases during bird breeding season (April – July)	TBD E.g., maintain high water level in the reservoir during the growing season (May – Sept)	pre-emptive flow releases to avoid	TBD
Some Key Questions to be explored		winter, or early spring) What are the benefits of increased spring base flows? Is there enough "extra" water (and how often) to provide a meaningful improvement?	How much additional water is needed to make a difference (and from where – reservoir vs. Kemano) and what - if any – are the impacts to other water use interests (e.g., flooding, power)	What are the benefits of a slightly more natural hydrograph? What would be the benefits to M-C fish species and impacts to other ecological interests (e.g., Nechako sockeye) and costs (e.g., \$ with slower ramping rates)?	 How much early discharge is required at SLS to match snowmelt and minimize increasing reservoir level? How will this effect reservoir filling and will there be enough water for later in the year? How will this affect other issues (e.g., flooding, summer fish habitat, fall river temperature)? 	What are the benefits from increased productivity on the ecosystem or target species (e.g., #/size of rainbow trout)? What are the impacts to other issues?	larger spills To what degree can operational changes (e.g., pre-spilling) reduce the frequency and intensity of high flow releases from SLS? What is the impact of preemptive flow releases on other issues (e.g., aquatic species, power generation)?	