Nechako WEI Meeting 29 - Wednesday, November 16, 2022 (In Vanderhoof, BC)

Michael Harstone, Compass Resource Mgt Clayton Schroeder, Compass

Jayson Kurtz, Ecofish Research Katie Healey, Ecofish

Draft Meeting Objectives

The following draft objectives have been proposed for the workshop:

- To review and provide an update since the last meeting
- To review and assess the performance of the Phase 1 Bookend Flow Alternatives
- To discuss and identify which Phase 1 Bookend Alternatives are better (or worse) at meeting BOTH your individual AND the collective interests of the Main Table (e.g., through some ranking exercises that you will be asked to do)
- To share and discuss ways to develop new and improved Phase 1 Flow Alternatives to be modeled
- To discuss the workplan and schedule for 2023
- To review any other next steps

Nechako WEI Process Steps

Timeline

Step 1 (2017)

Pre-engagement on methods and topics for the water engagement

Report out on Step 1 and develop plan for focused Water Engagement Initiative.

2018)

Launch search for independent facilitator (EDI Environmental Dynamics Inc. selected)

Step 4

Broad based engagement is underway to gain an understanding of interests to be addressed. Includes public meetings, small group workshops and one on one dialogue.

Step 5 (Future stage)

Develop options to address interests aised in Step 4.

Step 6 (Future stage)

Report back and present draft options for further refinement. Includes public meetings, small group workshops and one on one dialogue.

Step 7 (Future stage)

Finalise options and develop implementation plan, including regulatory approval where required.

We are here!

Develop Alternatives

4 Estimate Consequences

5 Evaluate Trade-offs and Select

Assessment of Flow Alternatives – Snapshot Overview

Purpose

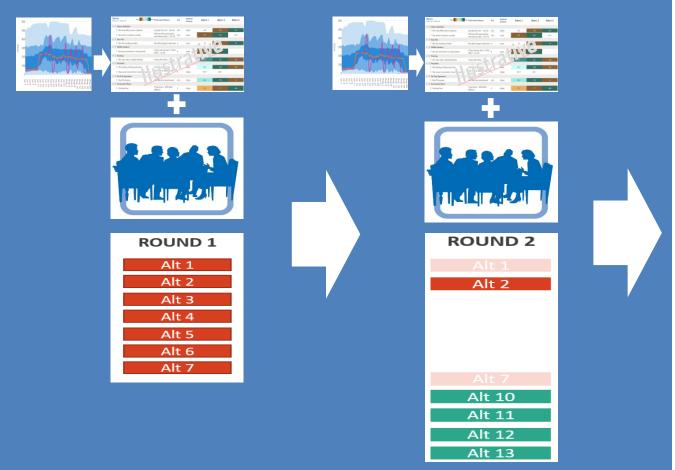
To explore and determine ways to improve Rio Tinto water management operations on the Nechako, given the multiple and competing water uses

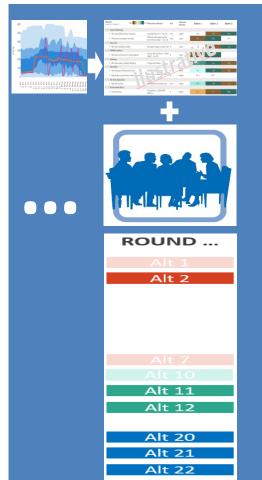
Schedule

- Multiple Main Table Meetings over the next 12 months or so
- ~ 1 day meetings every 8-10 weeks

Planning Framework

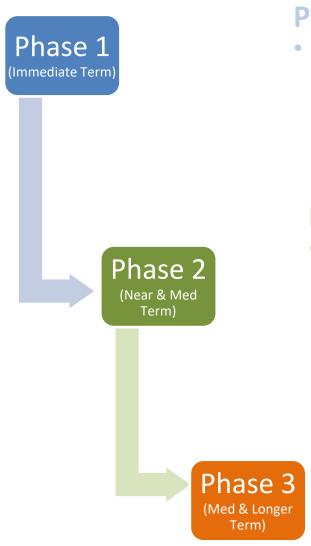
Structured Decision Making (consistent with *Provincial WUP Guidelines*)


WEI Main Table


To collaboratively share interests; identify and assess different flow alternatives; and aim to reach agreement on a preferred (and balanced) flow regime for the water control facilities

Refresher from our last meetings

SDM Process Steps



Refresher from our last meetings

Structure and Sequencing – as agreed to

Phase 1 Flow Alternatives

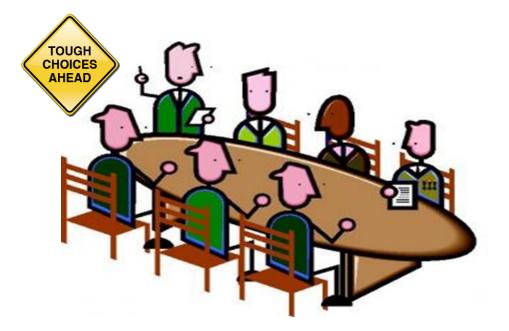
• Flow alternatives that Rio Tinto could unilaterally make within the immediate term (e.g., next calendar year) with notification to regulators, First Nations and stakeholders with time to undertake any internal assessments that may need to be carried out.

Phase 2 Flow Alternatives

• Flow alternatives that would require Rio Tinto to seek some form of approval / authorization(s) according to their existing water license and/or flow related agreements and/or commitments with First Nations.

Phase 3 Flow Alternatives

 Combination of new water management facilities (mitigation / enhancement projects) and potential changes to flow releases to the Nechako River to maintain and/or improve conditions
 6 related to key water uses.


Refresher from our last meetings

Draft Workplan: as discussed

Pre-Reading that was sent out

On-line webtools Training Session (Recorded)

HydroViz - Link here: https://www.hydroviz.ca/nechako

AltaViz – Link here: https://www.altaviz.ca/public/220db3fc-2aa8-4eea-

9dd1-e3a26c4bb97a

Access Code (same for both): NECHAKOWEI

Nechako Water Engagement Initiative

Nov 16th, 2022

Pre-Reading Package - Main Table Meeting 29

This pre-reading package serves as a primer with needed background information on the assessment of bookend alternatives, which will be the focus of our upcoming Main Table Meeting 29 on November 16th in Vanderhoof. It should take no more than about an hour and a half to read through; some of the material should look familiar, as it has been discussed at prior meetings and is included as reference material in case it helps (e.g., RT facilities and operations).

Please ensure you take the time to read and become familiar with the information and context summarized in this pre-reading package, as it will serve as the basis for our upcoming discussions and ranking exercises that you will be asked to complete!

At our last meeting (held on Sept 21, 2022), we undertook a "partial" assessment of the first 3 bookend alternatives on how Rio Tinto's water control facilities could be operated differently (i.e., how water is held and released). Our upcoming meeting will be assessing 6 out of the 7 bookend alternatives that were agreed to back at our May 25 meeting (#26). Unfortunately, we were not able to have Bookend Alternative 7 modeled and ready for our upcoming meeting and so it is not included in our assessment (but we are working on it for our next meeting).

We want to emphasize that the TWG has been regularly meeting over the past several months to review the draft performance measures (PMs) and identify a shortlist of them that provides an accurate and comprehensive (but not overwhelming) summary to compare and select which bookend alternatives are performing better than others. Through this work, the TWG has recommended a shortlist of 17 PMs to use out of the full set of 56 PMs for our upcoming meeting. Please note that we will have the full set of 56 PMs that have been calculated for each alternative, if you are interested?

This pre-reading package was prepared by Compass and Ecofish and has been structured according to the main steps in SDM as follows,

1	Workshop Details	. 3
2	Meeting Overview	. 5
3	Water Use Issues to Performance Measures (SDM Step 2)	
4	Phase 1 Bookend Alternatives (SDM Step 3)	10
5	Assessing the Phase 1 Bookend Alternatives (SDM Step 4)	16
ΛD	DENIDIY A - Full List of Parformance Measures	15

CONFIDENTIALITY

This pre-reading package and the access and use of the two online tools (HydroViz & AltaViz) are confidential; solely meant to support the deliberations of the Main Table. We recognize that some of the draft materials we will be sharing and discussing could be taken out of context by people outside the process. We therefore ask that you DO NOT distribute this document or the on-line links and passwords externally.

Define Objectives and Measures **Develop Alternatives** Estimate Consequences **Evaluate Trade-Offs and Select**

- 1 Clarify the Decision Context
 - 2 Define Objectives and Measures
 - 3 Develop Alternatives
 - 4 Estimate Consequences
 - 5 Evaluate Trade-Offs and Select
 - 6 Implement, Monitor and Rev

				·			
Culture ar	nd He	ritage					
Fish and Wildlife	е						
Issues	#	Performance Measures					
Reservoir fish	13	Average annual pelagic habitat	Location:	Nechako Reservoir			
habitat			Timing:	All Year			
			Unit:	Km2			
			Direction:	More is better			
			MSIC:	20%			
River water	18	a: # of days average daily temp	Location:	Chinook: entire Nechako River			
temperature and		exceeds 18C (at Finmore)		Sockeye: below confluence with Stuart			
migrating salmon				River			
		b: # of days average daily temp exceeds 19C	Timing:	Salmon migration period			
				Jun 15 – Aug 29			
			Unit:	Days			
		c: # of days average daily temp	Direction:	Fewer is better			
		exceeds 20C	MSIC:	20%			
River water	19	Maximum # of consecutive days	Location:	Chinook: entire Nechako River			
temperature and		average daily temp >18C	Timing:	Growing season, Jun 15 – Aug 30			
juvenile salmon			Unit:	Days			
			Direction:	Less is better			
			MSIC:	20%			
River Chinook	20	Average habitat based on flow	Location:	Nechako River between Cheslatta Falls and			
spawning habitat		curve		Vanderhoof			
			Timing:	Aug 15 - Oct 15			
			Unit:	m ²			
			Direction:	More is better			
			MSIC:	20%			

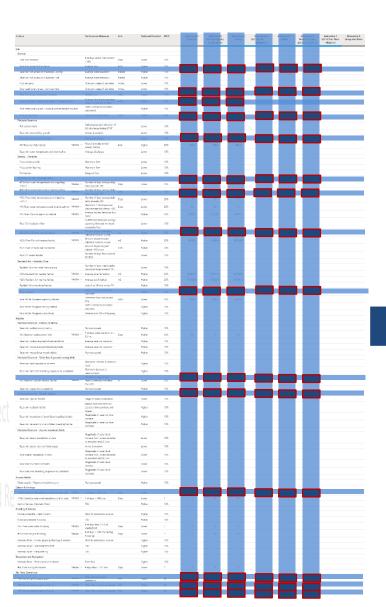
Flooding and Erosion

Clarify the Decision Context

Phase 1 Bookend Alternatives

Define Objectives and Measures

Develop Alternatives


Phase 1											
	Altern 1	Altern 2	Altern 3	Altern 4	Altern 5	Altern 6	Altern 7				
Primary Purpose	Status Quo To serve as a reference to explore the benefits and costs of making flow changes	Nechako River Aquatic Species & Ecosystems Provide a more naturalized hydrograph ("freshet") to promote ecosystem functions that benefit a range of aquatic species	Nechako River Sockeye Lower STMP temperature targets (18% or 19%) for sockeye migration	Murray-Cheslatta Aquatic Species & Ecosystems Provide a more naturalized hydrograph (i.e., reduce flow variability, especially through STMP) to promote ecosystem functions that benefit a range of aquatic species.		Reservoir Aquatic Species & Ecosystems Maximize reservoir productivity	Turray-Cheslatta A Nechako River Flood Mitigation Minimize flooding of Cheslatta grovesites. Minimize overland flooding at Vanderhoof				
Base Flow Condition	Status Quo	Status Quo status quo for smelter, tier 1 power sales, AWA, STMP, SLS min flow, and physical infrastructure (i.e., max/min r All other constraints can be altered (flooding, tier 2 power sales, ice jam, beavers etc.)									

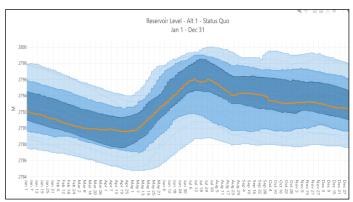
Estimate Consequences

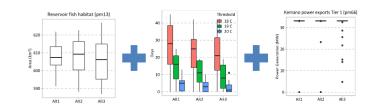
Evaluate Trade-Offs and Select

6 Implement, Monitor and Review

Assessment

Critoria		Performance Measures	Unit	Proferred Direction	MSIC	Alternative 1 Status Que	Alternative 2 Nat 1 Hydrograph / Aquatic Species	Alternative Sockeye
Fish								
Nechako Reservelir								
A13 Reservoir fish habitat	Median ~	Area of average annual pelagic habitet	km2	Higher	20%	607.4	609.2	606.2
Anadromous Fish - Nechako Fiver								
#10a River water temperature and migrating salman	Medien V	Number of days average daily temp proceeds TSC	Doys	Lower	20%	20	25	21
A18b Siver water temperature and migrating salmon	Modan ~	Number of days average daily temp exceeds 190	Days	Lower	20%	16	11	
#18c River water temperature and migrating salmon	Median ~	Number of days average daily tomp piccods 200	Days	Lower	20%	5	3	
A19 Siver water temperature and juvenile salmon	Median ~	Maximum # of consecutive days average daily temp >18C	Days	Lower	20%	13	13	10
#20 River Chincok spawning habitat	Median ~	Average habitat based on flow curve		Higher	20%	31328.7	31525.4	29199.7
#22a River Chinook rearing habitat	Median V	Amount of post-emergent habitat (Envirocon curve)	mil	Higher	20%	791463.6	629240.7	796736.0
#22b Roer Chinook rearing habitet	Median ~	Amount of pre-migrant habitat (Envirosce surve)	m2	Higher	20%	357938	95059.6	255758.
Resident Fish - Nechako River								
#25a Resident fish rearing habitat	Median V	Average juvenile habitat	m2	Higher	20%	646567.9	310417.2	607430.3
#256 Resident rish rearing habitat	Median V	Average adult habitat	m2	Higher	20%	1574358.5	1257534.7	1367051.
Viidife								
Nechako Reservoir - Caribou & Moose								
332 Reservoir peritora lend links	Modan ~	# of days water elevation is > 052 m	Dayx	Higher	20%	10	4	70
Nechako Reserveir - Waterfowl & ground nesting birds								
#38 Reservoir osprey nesting habitat	Median ~	Number of years where received elevation exceeds 852,64m	m	Lower	20%	852.3	852.1	852.3
Sulture & Heritage								
A49s Cheslatta watershed inundation of arch sites	Modan ~	A of days > 330 cms	Days	Lower	7	0	0	40
A49b Chaslatta watershed inundation of arch sites	Median ~	# of days > 300 ons	Days	Lower	7	0	0	40
Strating & Eroxion								
ASS River open-water flooding	Median ~	A of days flow > 550 at Vanderhoof	Days	Lower	7	0	0	0
ASSa River ice-jam floading	Median ~	A of days > 100 cms during freeze- up	Days	Lower		0	0	0
Secretion and Navigation								
A64 River hiking trail access	Median ~	A days flow > 355 cms	Days	Lower	7	0	0	35
Rio Tinto Operations								
#65 Komano power generation	Medies ~	Mean Kemano power generation	MW	Higher	10	079.7	739.0	737.3
A66 Kemano power exports (Tier 1)	Median ~	Mean Tier 1 power generation	MW	Higher	50	33.1	33.1	33.1
N67 Kemano power exports (Tier 2)	Median V	Mean Tier 1 power generation	MW	Higher	50	116.6	6.6	6.8


Clarify the Decision Context


5 Evaluate Trade-Offs and Select

6 Implement, Monitor and Review

Criteria		Performance Measures	Unit	Preferred Direction	MSIC	Alternative 1 Status Qua	Alternative 2 NorThlytrograph / Aquatic Species	Alternative 5 Sockeye
Helh								
Nechako Reservoir								
#13 Reservoir fish hebitet	Median ∨	Area of exerage annual pelagic habitat	km2	Higher	20%	607.4	1070.2	5,004
Anadromous Fish - Nechako River								
#18a River water temperature and migrating salmon	Median ~	Number of days average daily temp exceeds 18C	Days	Lower	20%	28	25	
#10b River water temperature and migrating namen	Median ~	Number of days average daily temp exceeds 190	Days	Lower	20%	16	11	
#Tite River water femperature and migrating raimon	Median ~	Number of days surrage daily temp exceeds FOC	Days	Louier	20%	5	3	
#19 River water temperature and juvenile salmon	Median ~	Maximum # of consecutive days average daily temp ≥180	Days	Lower	20%	13	13	
#20 River Chinook spawning habitat	Median ~	Average habitat based on flow ourse		Higher	20%	31328.7	31536.4	29199.7
#22a River Chinoek rearing habitat	Median ~	Amount of post-emergent habitat Cavirocan curve)	m2	Higher	20%	791463.6	625240.7	796736.6
#22h River Chinook maring habited	Median ~	Amount of ore-misrost basins (Tourscore guye)	m2	Higher	20%	357935	95059.6	355758.9
Resident Fish - Nechalco River								
#25a Resident fish rearing habitat	Median ~	Average juvenile habitat	m2	Higher	20%	646567.9	310417.2	607430.3
#25b Resident fish rearing habitat	Median ~	Avorago adult habitat	m2	Higher	20%	1574358.5	1257534.7	1367031.0
Widte								
Nechako Reservoir - Caribou & Meese								
#52 Reservoir continui land links	Median ~	# of days water elevation is > 852 m.	Days	higher	20%	10	4	
Nechalio Reservoir - Waterfood & ground nesting birds								
#38 Reservoir aspray nesting habitat	Median ~	Number of years where reservoir elevation exceeds 852.66m	m	Lower	20%	852.3	952.1	852.3
Culture & Heritage								
#15th Checlette statement mundation of architek	Modian ~	# of days > SSD one	Dayx	Louser		0		
845b Chesiatta watershed inundation of with sites	Modian ∨	P of days > 500 ons	Dwyx	Lower		0	0	
Reading & Erosion								
#53 River open-water flooding	Median ~	# of days flow > 550 at Vanderboot	Days	Lewer	7	0	0	0
#50a River ice-jam flooding	Median ~	# of days > 100 cms during favore up	Days	Lower	7	0		0
fecreation and Navigation								
#64 River hiking trail access	Median ~	# days flow > 355 ons	Days	Lower	7	0		35
So Tinto Operations								
#65 Kemeno power generation	Median V	Mean Kemano power generation	MW	Higher	50	879.7	789.8	737.3
#66 Kemano power exports (Ter 1)	Median V	Mean Tier 1 power generation	MW	Higher	50	33.1	20.1	22.1
#67 Kemano power experts (Tier 2)	Median ~	Mean Tier 1 power generation	MW	Higher	50	1166	6.0	

CONFUSED UNSURE UNCLEAR PERPLEXED BEWILDERED

Questions?

Timeline

Pre-engagement on methods and topics for the water engagement

Report out on Step 1 and develop plan for focused Water

iten 3 (March

2018)
Launch search for

independent facilitator (EDI Environmental Dynamics Inc. selected)

Step 4

we are nere!
Broad based
engagement is
underway to gain an
understanding of
interests to be
addressed. Includes
public meetings, small
group workshops and

Step 5 (Future stage)

Develop options to address interests raised in Step 4.

Step 6 (Future stage)

Report back and present draft options for further refinement. Includes public meetings, small group workshops and one on one dialogue.

Step 7 (Future stage)

Finalise options and develop implementation plan, including regulatory approval where required.

Michael Harstone Jayson Kurtz

At our WEI Meeting 27

Building Phase 1 Bookend Alternatives

- Discussed and agreed to a number of illustrative bookend alternatives to be developed and further developed by the TWG
- They were meant to be "illustrative" and provide a cross section of the nature and type of operating alternatives that could be developed
- THEY WERE designed as a basis to LEARN from and NOT as the basis to reach agreement on (as they are not particularly multi-interest focused)

At our WEI Meeting 27

Phase 1 – Draft & Illustrative Bookend Flow Alternatives (developed through TWG)

	Altern 1	Altern 2	Altern 3	Altern 4	Altern 5	Altern 6	Altern 7
Primary Purpose	Status Quo	Nechako River	Nechako River	Murray- <u>Cheslatta</u>	Reservoir	Reservoir	Murray-Cheslatt
ruipose	To serve as a reference to explore the benefits and	Aquatic Species & Ecosystems	Sockeye	Aquatic Species & Ecosystems	Wildlife	Aquatic Species & Ecosystems	Flood Mitigatio
	costs of making flow changes	Provide a more naturalized hydrograph ("freshet") to promote ecosystem functions that benefit a	Lower STMP temperature targets (18°c or 19°c) for sockeye migration	Provide a more naturalized hydrograph (i.e., reduce flow variability, especially through STMP) to promote ecosystem functions that benefit a	Minimize flooding of bird nests.	Maximize reservoir productivity	Minimize flooding of Cheslatta gravesites. Minimize overland
		range of aquatic species		range of aquatic species.			flooding at Vanderhoof
Base Flow Condition	Status Quo	status quo for smelte		WA, STMP, SLS min flow, ar can be altered (flooding, tie			servoir elevation:
Operational Changes / Targets	None	The flow timing will follow the Ecofish naturalized flow hydrograph, scaled to the annual volume of water that is available (including additional volume from current tier 2 power sales). This will result in more flow May-July, will maintain flows in the STMP period, and possibly result in lower flow at other times of	There are two options to achieve this: Maximize spillway release July 20 to Aug 20 (and see how cool we can reach) Target 18 and 19C by releasing known volume of water (based on Alec's temp/flow modeling) This will result in more	Ramping rates (how fast flow increases/decreases) would be applied to the STMP period. Maximum flow for individual STMP events will not change, but the events will start sooner and end later, resulting in more volume to reach the same temperature compared to status quo. To provide a more natural-shaped hydrograph, high flows will continue to be released on the decline of	Minimize reservoir level increases during bird breeding season (April 15 – Aug 15). There are two options to achieve this: Hold reservoir steady during bird breeding season (prevent nest flooding) Reach full pool prior to bird breeding season (prevent bird nesting)	Maximize reservoir elevation during the growing season (May – Sept) This will require filling the reservoir as fast as possible in the spring and will result in lower flow during the initial onset of freshet, until the reservoir is full. When the reservoir is full, flow	Hard constraint of 300cms maximur at Chesiatta falls This will require lower reservoir elevations during winter/spring, resulting in higher iver flow during this period and lower flow during the freshet (i.e., more stable flow).
		the year.	flow during mid-July to mid-Aug, and less flow at other times of the year.	freshet, leading into the STMP. The flow reduction following the STMP will be more gradual. This will result in a longer freshet, similar magnitude but longer duration STMP flow pulses, and less flow at other times of the year.	Assuming the latter, this will result in and higher flow during freshet and lower flow during the fall and winter.	will likely increase for the duration of freshet.	

Base Flow Conditions

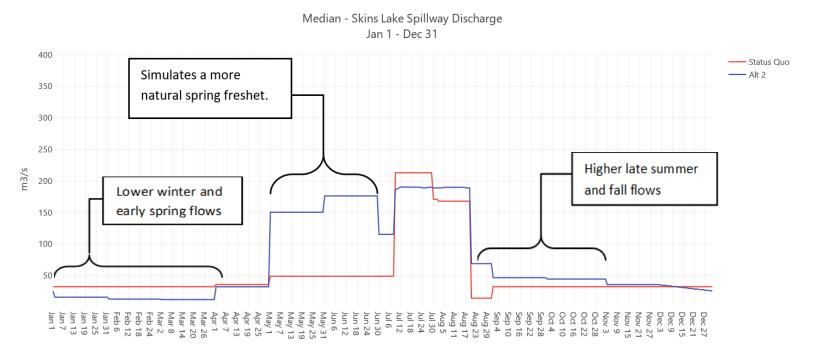
(i.e., Aim was not to alter these parameters)

- Meet hydropower flows to meet Smelter load and Tier 1 power sales
- Meet minimum AWA and STMP flow requirements
- Meet Skins Lake Spillway (SLS) min flows
- Physical constraints of system (e.g., max/min reservoir elevs)

Flexible Operating Parameters

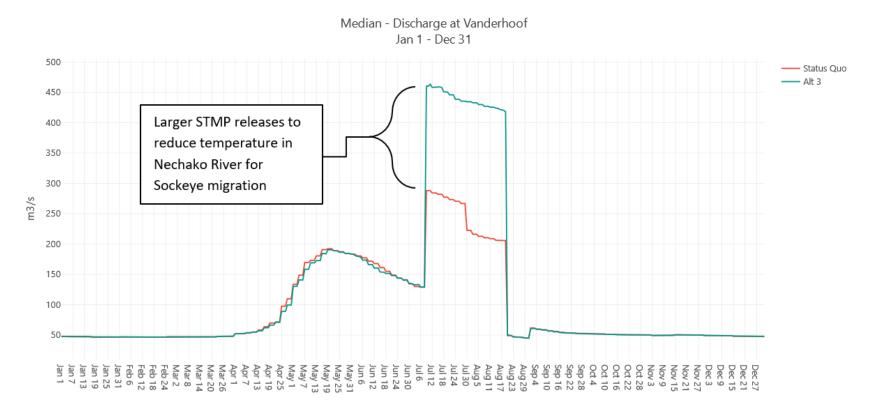
(i.e, parameters that could be altered and/or re-prioritized in development of bookends)

- Re-allocating monthly AWA flow release schedule
- Hydropower flows for Tier 2 power sales
- Ramping rates at SLS
- Flood risk thresholds (e.g., Cheslatta Falls)
- Flow operations for beavers and avoiding ice jams

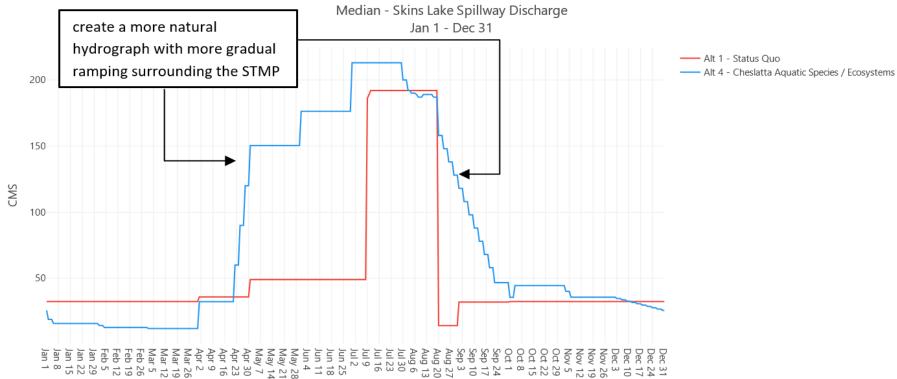


Alternative 1 – Status Quo

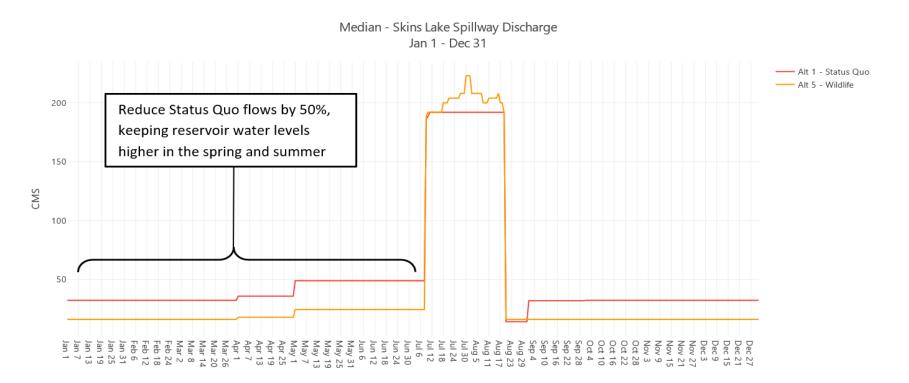
- This alternative is modeled to represent the current operations at Rio Tinto's water control facilities
- It incorporates water license and other flow related criteria that are currently used to manage the water through the facilities


Alternative 2 – Naturalized Hydrograph

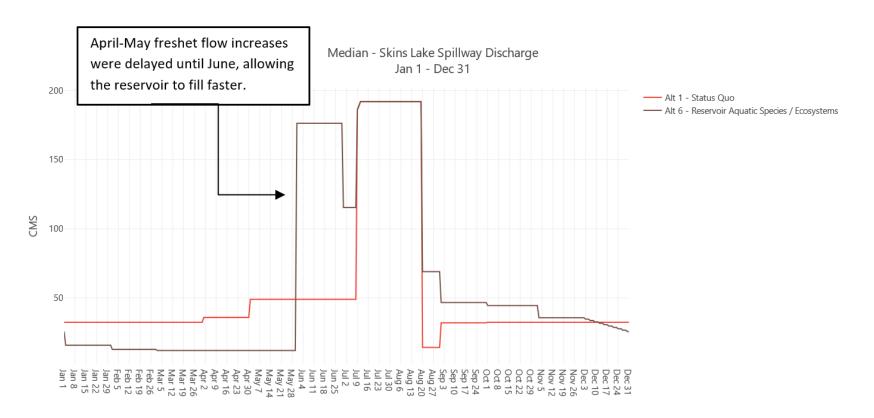
- Alt 2 is intended to benefit aquatic species and ecosystems in the Nechako River by providing a more naturalized hydrograph (i.e., shaped with a spring freshet)
- This alternative was created by scaling the BC Water Tool Nechako Reservoir watershed mean monthly discharge by 30% (to reflect the general flow allocation 30% Nechako, 70% Kemano) as a minimum SLS release.
- As a result, the Alt 2 hydrograph has moderately less flow during the early freshet but considerably more during mid freshet.


Alternative 3 – Salmon Migration (Temperature)

- Alt 3 is intended to benefit salmon migration success by reducing water temperature in the Nechako River below the current STMP target of 20C.
- This Alt was created by doubling the current STMP flows in July and Aug.


Alternative 4 – Cheslatta Aquatic Species / Ecosystems

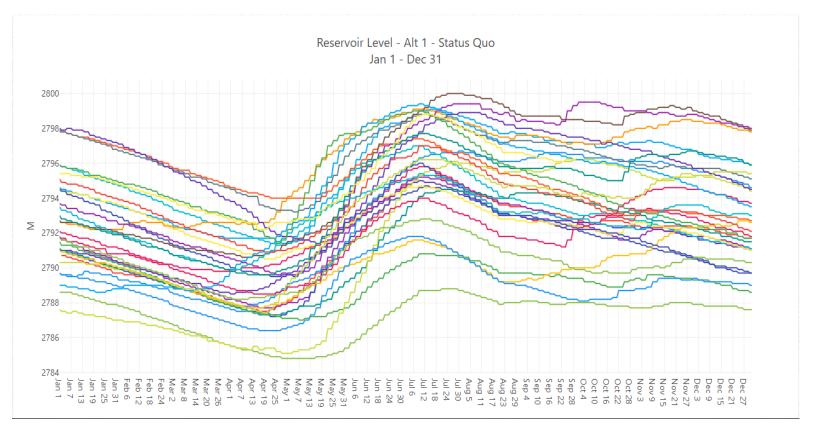
- Alt 4 is intended to benefit aquatic species / ecosystems in the Cheslatta watershed
- It provides a more naturalized hydrograph (i.e., reduced flow variability, especially during STMP period and eliminated the flow reduction between freshet and STMP)
- Also, it was designed for more gradual ramping leading into and following the STMP period.


Alternative 5 – Wildlife (Reservoir)

- Alt 5 is intended to benefit wildlife in the reservoir, specifically nesting birds (i.e., bring the reservoir to near full pool prior to bird nesting to prevent rising water from flooding nests).
- This alternative was created by reducing status quo flows by 50%, allowing the reservoir to fill faster and higher.

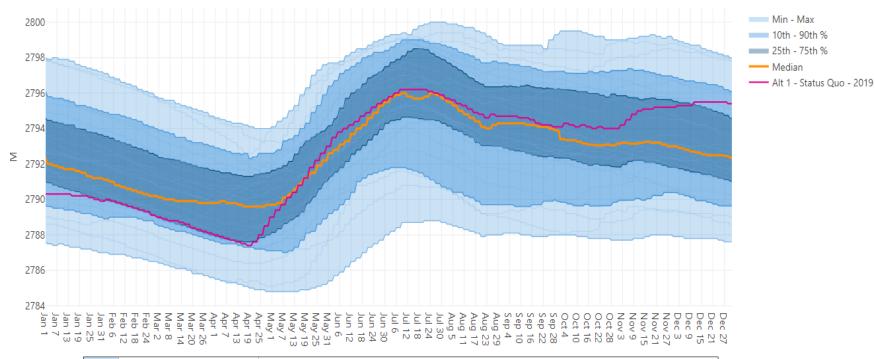
Alternative 6 – Reservoir Aquatic Species / Ecosystems

- Alt 6 is intended to benefit aquatic species and ecosystems in the reservoir, specifically aquatic productivity.
- This alternative is based on Alt 2, except April-May freshet flow increases were delayed until June, allowing the reservoir to fill faster.



Assessing Bookend Alternatives

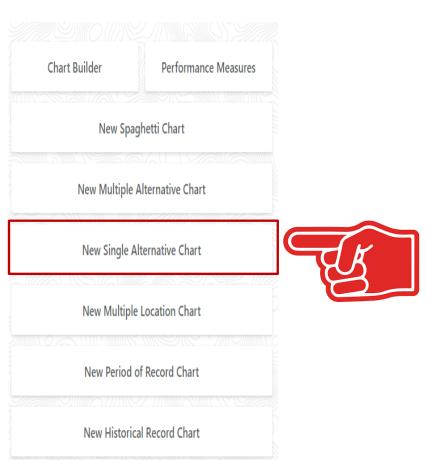
- Hydrology

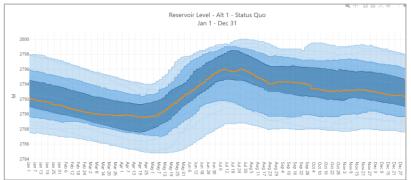

Michael Harstone Clayton Schroeder

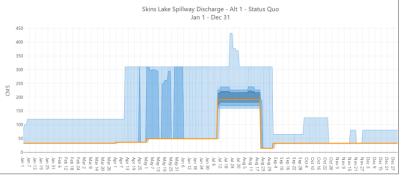
Modeling Outputs: Using Hydrographs

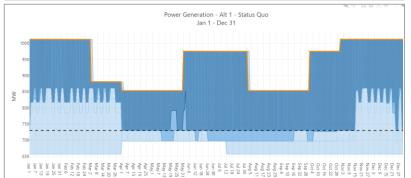
Modeling Outputs: Using Hydrographs

Reservoir Level - Alt 1 - Status Quo Jan 1, 2019 - Dec 31, 2019

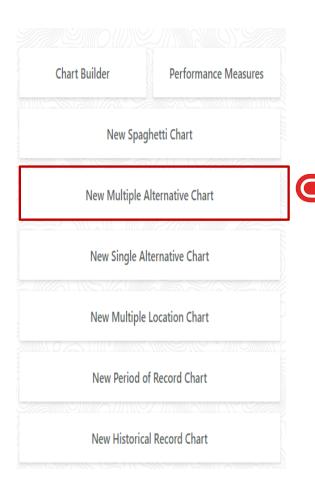


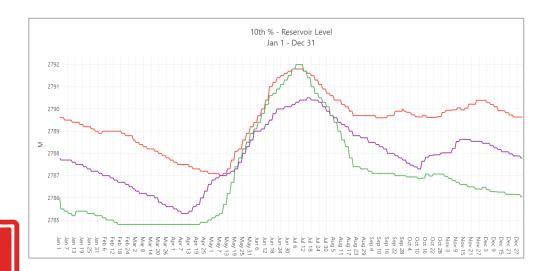

Maximum	Across the entire dataset, the maximum value recorded on a given day
90 th percentile	90 % of all recorded values were below this point, and 10% were above.
	This represents a 1 in 10 year higher river flow / or higher reservoir level event
75 th percentile	75 % of all recorded values were below this point, and 25% were above
50 th percentile	50% of records would be above, and 50% would be below this point.
(median)	This represents an average'y' river flow or reservoir level where half the years
	would be expected to be above or below this point.
25 th percentile	25 % of all recorded values were below this point, and 75% were above
10 th percentile	10% of all recorded values were below this point, and 90% were above.
	This represents a 1 in 10 year lower river flow / or lower reservoir level event
Minimum	Across the entire dataset, the minimum value recorded on a given day
Selected Year	Represents a single year from the selected dataset

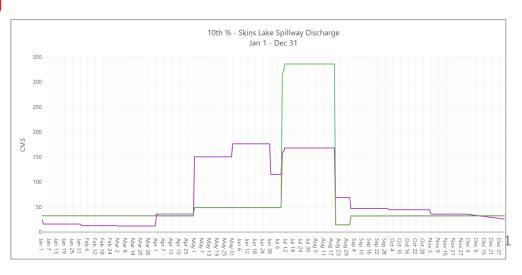

HydroViz – Online Tool


https://www.hydroviz.ca/nechako

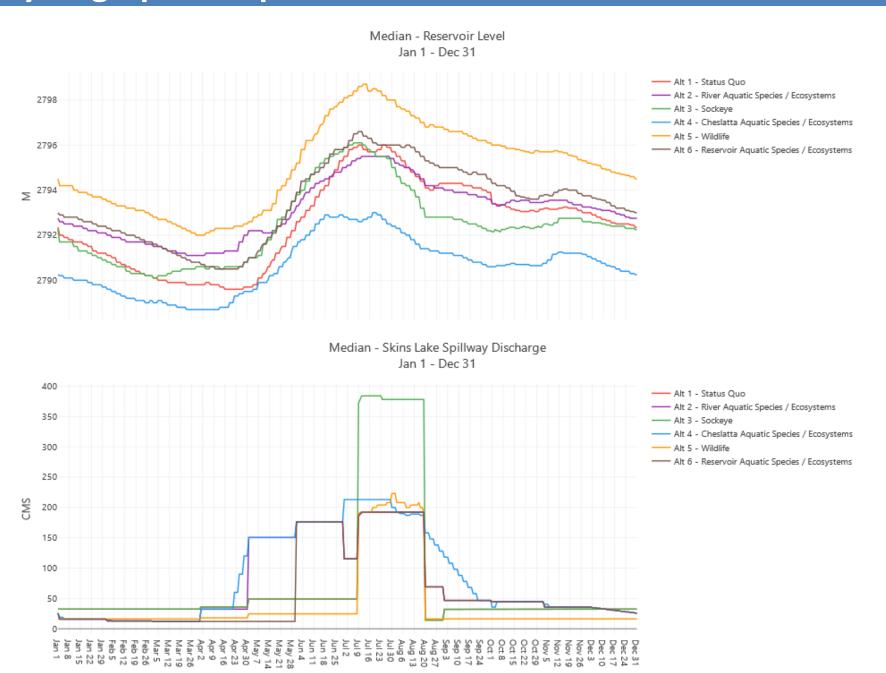
Access Code: NECHAKOWEI

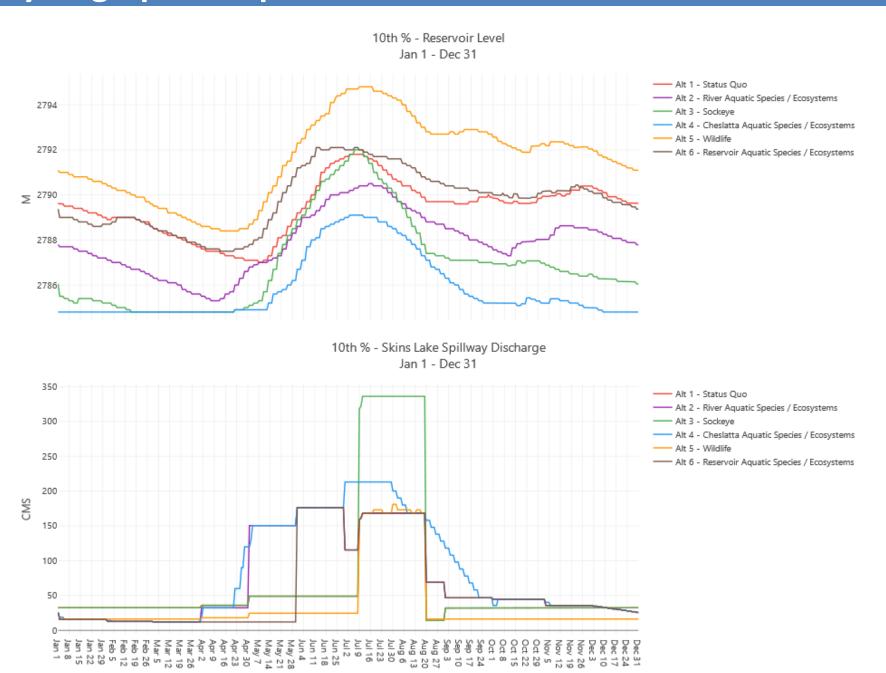


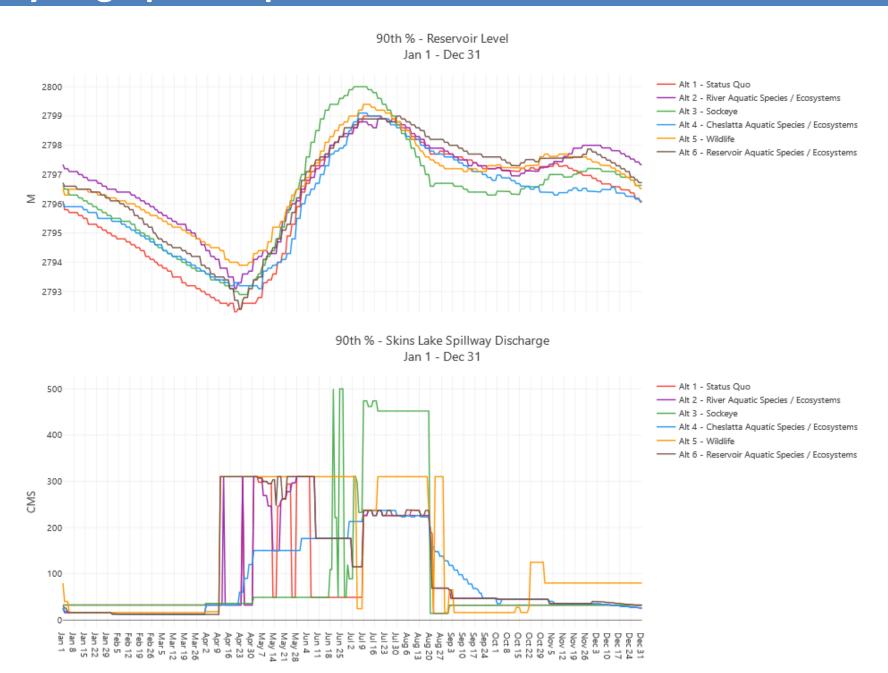



HydroViz – Online Tool

https://www.hydroviz.ca/nechako


Access Code: NECHAKOWEI




Hydrograph Comparisons - Phase 1 Bookend Alternatives

Hydrograph Comparisons - Phase 1 Bookend Alternatives

Hydrograph Comparisons - Phase 1 Bookend Alternatives

HydroViz – Online Tool

https://www.hydroviz.ca/nechako

Access Code: NECHAKOWEI

Assessing Bookend Alternatives

- Shortlisted Performance Measures

Katie Healey Jayson Kurtz

Cutting to the Chase

exceeds 18C

exceeds 20C

Median

Median

Median

Median

Median

80th %

Median

Median

Median

#18c River water temperature and migrating salmon

#22a River CH rearing habitat Post-emergent Habitat

#21a River Chinook incubation flow

#25a Resident fish rearing habitat

#32 Reservoir caribou land links

#41b Reservoir wetland habitat

#53 River open-water flooding

#66 Kemano power exports (Tier 1)

#67 Kemano power exports (Tier 2)

Culture & Heritage

Flooding & Erosion

Rio Tinto Operations

#65b Smelter Power

#45b River bird inundation of nests

#49b Cheslatta watershed inundation of arch sites

#38 Reservoir osprey nesting habitat

Wildlife

Number of days average daily temp

of days water elevation is > 852 m

Number of years where reservoir

elevation exceeds 852.44m Number of years where reservoir

elevation exceeds 852.94 m Number of years where Cheslatta

discharge exceeds 275 cms

of days flow >550 at Vanderhoof

of days smelter load isn't met

Mean Tier 1 power generation

Mean Tier 2 power generation

of days > 300 cms

Ratio of min incubation flow to

average spawning flow Amount of post-emergent habitat

Average juvenile habitat

(Envirocon curve)

Alternative 5

Wildlife

85

80.5

28

4

636,607

670,198

0

33.1

104.8

Alternative 6

Reservoir Aquatic Species / Ecosystems

211

24

434,408

15

9

0

33.1

Catting	g c	o the C		IU.	3 C			No.		
Criteria		Performance Measures	Unit	Preferred Direction	MSIC	Alternative 1 Status Quo	Alternative 2 Nat'l Hydrograph / Aquatic Species	Alternative 3 Sockeye	Alternative 4 M/C Aquatic Species / Ecosystems	,
Fish										
#6 River fish access to side/off channels	Median	Average flow	CMS	Higher	20%	93.6	148.1	147.1	169.1	
#12 Reservoir productivity-flushing	Median	Average discharge	CMS	Lower	20%	85.5	142.1	139.2	157.9	
#17 Cheslatta watershed fish habitat	Median	Range of flow	CMS	Lower	20%	193.8	162.3		171.7	
#18a River water temperature and migrating salmon	Median	Number of days average daily temp	Days	Lower	20%	28	25	21	23	

Lower

Higher

Higher

Higher

Higher

Lower

Higher

Lower

Lower

Lower

Lower

Higher

Higher

20%

20%

20%

20%

20%

20%

20%

20%

50

50

5

50

771,723

646,568

10

13

9

6

0

33.1

116.6

601,407

310,417

13

8

8

33.1

771,655

607,430

15

33.1

0

33.1

Days

%

m2

m2

Days

Years

Years

Years

Days

Days

Days

MW

MW

Phase 1 Bookend Alternatives Performance Measures

Katie and Jayson ...

Assessing Bookend Alternatives

- Consequence Table (PMs Summary)

Performance Measures: Assessing Bookend Alternatives

Criteria		Performance Measures	Unit	Preferred Direction	MSIC	Alternative 1 Status Quo	Alternative 2 Naturalized Hydrograph	Alternative 3 Sockeye Migration (Temp)	Alternative 4 Cheslatta Aquatic Ecosystems	Alternative 5 Wildlife (Reservoir)	Alternative 6 Reservoir Aquatic Ecosystems
Fish											
#6 River fish access to side/off channels	Median ∨	Average flow	CMS	Higher	20%	93.6	148.1	147.1	169.1	85	122.9
#12 Reservoir productivity-flushing	Median ∨	Average discharge	CMS	Lower	20%	85.5	142.1	139.2	157.9	80.5	116.1
#17 Cheslatta watershed fish habitat	Median ∨	Range of flow	CMS	Lower	20%	193.8	162.3	386	171.7	293.8	211
#18a River water temperature and migrating salmon	Median ∨	Number of days average daily temp exceeds 18C	Days	Lower	20%	28	25	21	23	28	24
#18c River water temperature and migrating salmon	Median ∨	Number of days average daily temp exceeds 20C	Days	Lower	20%	5	3	1	2	4	3
#21a River Chinook incubation flow	Median ∨	Ratio of min incubation flow to average spawning flow	%	Higher	20%	50	16.1	32	12.3	27.3	16.1
#22a River CH rearing habitat Post-emergent Habitat	Median ∨	Amount of post-emergent habitat (Envirocon curve)	m2	Higher	20%	771,723	601,407	771,655	574,511	636,607	579,932
#25a Resident fish rearing habitat	Median ∨	Average juvenile habitat	m2	Higher	20%	646,568	310,417	607,430	216,831	670,198	434,408
Wildlife											
#32 Reservoir caribou land links	Median ∨	# of days water elevation is > 852 m	Days	Higher	20%	10	4	20	0	36	18
#38 Reservoir osprey nesting habitat		Number of years where reservoir elevation exceeds 852.44m	Years	Lower	20%	13	13	15	10	25	15
#41b Reservoir wetland habitat		Number of years where reservoir elevation exceeds 852.94 m	Years	Higher	20%	9	8	12	6	18	9
#45b River bird inundation of nests		Number of years where Cheslatta discharge exceeds 275 cms	Years	Lower	20%	6	8	31	2	10	7
Culture & Heritage											
#49b Cheslatta watershed inundation of arch sites	Median ∨	# of days > 300 cms	Days	Lower	7	0	0	40	0	2	0
Flooding & Erosion											
#53 River open-water flooding	Median ∨	# of days flow >550 at Vanderhoof	Days	Lower	7	0	0	0	0	0	0
Rio Tinto Operations											
#65b Smelter Power	Median ∨	# of days smelter load isn't met	Days	Lower	7	0	167	226	44	0	0
#66 Kemano power exports (Tier 1)	Median ∨	Mean Tier 1 power generation	MW	Higher	50	33.1	33.1	33.1	33.1	33.1	33.1
#67 Kemano power exports (Tier 2)	Median ∨	Mean Tier 2 power generation	MW	Higher	50	116.6	6.8	6.6	6.6	104.8	49.2

Performance Measures: Assessing Bookend Alternatives

Criteria		Performance Measures	Unit	Preferred Direction	MSIC	Alternative 1 Status Quo	Alternative 2 Naturalized Hydrograph	Alternative 3 Sockeye Migration (Temp)	Alternative 4 Cheslatta Aquatic Ecosystems	Alternative 5 Wildlife (Reservoir)	Alternative 6 Reservoir Aquatic Ecosystems
Fish											
#6 River fish access to side/off channels	Median ∨	Average flow	CMS	Higher	20%	93.6	148.1	147.1	169.1	85	122.9
#12 Reservoir productivity-flushing	Median ∨	Average discharge	CMS	Lower	20%	85.5	142.1	139.2	157.9	80.5	116.1
#17 Cheslatta watershed fish habitat	Median ∨	Range of flow	CMS	Lower	20%	193.8	162.3	386	171.7	293.8	211
#18a River water temperature and migrating salmon	Median ∨	Number of days average daily temp exceeds 18C	Days	Lower	20%	28	25	21	23	28	24
#18c River water temperature and migrating salmon	Median ∨	Number of days average daily temp exceeds 20C	Days	Lower	20%	5	3		2	4	3
#21a River Chinook incubation flow	Median ∨	Ratio of min incubation flow to average spawning flow	%	Higher	20%	50	16.1	32	12.3	27.3	16.1
#22a River CH rearing habitat Post-emergent Habitat	Median ∨	Amount of post-emergent habitat (Envirocon curve)	m2	Higher	20%	771,723	601,407	771,655	574,511	636,607	579,932
#25a Resident fish rearing habitat	Median ∨	Average juvenile habitat	m2	Higher	20%	646,568	310,417	607,430	216,831	670,198	434,408
Wildlife											
#32 Reservoir caribou land links	Median ∨	# of days water elevation is > 852 m	Days	Higher	20%	10	4				18
#38 Reservoir osprey nesting habitat		Number of years where reservoir elevation exceeds 852.44m	Years	Lower	20%	13	13	15	10		15
#41b Reservoir wetland habitat		Number of years where reservoir elevation exceeds 852.94 m	Years	Higher	20%	9	8	12	6	18	9
#45b River bird inundation of nests		Number of years where Cheslatta discharge exceeds 275 cms	Years	Lower	20%	6	8	31	2	10	7
Culture & Heritage											
#49b Cheslatta watershed inundation of arch sites	Median ∨	# of days > 300 cms	Days	Lower	7	0	0	40	0	2	0
Flooding & Erosion											
#53 River open-water flooding	Median ∨	# of days flow >550 at Vanderhoof	Days	Lower	7	0	0	0	0	0	0
Rio Tinto Operations											
#65b Smelter Power	Median ∨	# of days smelter load isn't met	Days	Lower	7	0	167	226	44	0	0
#66 Kemano power exports (Tier 1)	Median ∨	Mean Tier 1 power generation	MW	Higher	50	33.1	33.1	33.1	33.1	33.1	33.1
#67 Kemano power exports (Tier 2)	Median ∨	Mean Tier 2 power generation	MW	Higher	50	116.6	6.8			104.8	49.2

AltaViz – Online Tool

https://www.altaviz.ca/public/220db3fc-2aa8-4eea-9dd1-e3a26c4bb97a

Access Code: NECHAKOWEI

Commentary: Assessing Bookend Alternatives

Alt 1 Status Quo	Performs quite well across most of the interests. There are other alternatives that perform better for some PMs, but also others that perform worse. Exceptions for river temperature for migrating salmon (PM 18a-c) and river fish access to off channel habitats, for which all other alternatives perform equal to or better than Alt 1.
Alt 2 Aquatic Species / Ecosystems	Good for Cheslatta fish habitat and access to off channel habitat, but performs poorly for power, chinook salmon, and productivity interests. This alternative didn't perform as expected for Nechako fish PMs due to too much flow during critical rearing periods; this could be revised and improved by delaying the onset of freshet until after chinook salmon emergence.
Alt 3 Sockeye Migration	Performs well for low-flow fish PMs (emerging chinook salmon and resident fish habitat) and water temperature. It does not perform well for PMs sensitive to flow increases (productivity, Cheslatta fish habitat, flooding) and power.
Alt 4 Cheslatta Aquatic Ecosystems	Performs well for low reservoir interests. It is good for Cheslatta fish habitat, osprey and reservoir and river birds, Cheslatta culture and heritage sites, off channel access, and flooding. It does not perform well for reservoir wetlands, productivity, caribou, river fish habitat, and power.
Alt 5 Wildlife (Reservoir)	Opposite Alt 4; performs well for high reservoir interests. It is good for reservoir wetlands, productivity, caribou, river fish habitat, and power but does not perform well for river temperature and fish habitat, Cheslatta culture and heritage sites, and osprey.
Alt 6 Reservoir Aquatic Ecosystems	Alt 6 doesn't dominate any other alternatives (it generally performs more poorly than other alternatives across all interests). The interest it was specifically targeting turned out to be insensitive.

Assessing Alternatives

- Ranking Exercise

Michael & Clayton

Phase 1 Bookend Alternatives Ranking Exercise

Purpose:

- To test out the draft PMs for helping to inform our assessments
- To get a better sense of people's priorities
- To explore and highlight what we like and don't like about the bookend alternatives
- To gain insight towards building the first round of Operating Alternatives

REMINDER About the Bookend Alternatives!

 They were predicated on **LEARNING** and not for any one of them to reach agreement on!

Phase 1 Bookend Alternatives Ranking Exercise

Two ranking exercises will be used today,

1. Direct Ranking – is an intuitive technique where you will be asked directly which alternative(s) you most prefer

2. Swing Weighting – is an alternative method for identifying your preferred alternative(s) through the performance measures

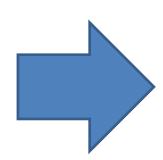
Neither one is right. Both provide an alternative means of exploring priorities and values individually and collectively!

Direct Ranking Exercise

Direct Ranking

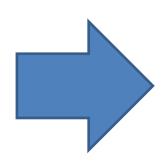
You will be asked to indicate which alternatives are your 'most preferred' and 'least preferred', the steps are:

- STEP 1: Rank each alternative from #1 (best or 'most preferred') to #6 (worst or "least preferred) according to how well the alternatives are meeting your interests
- STEP 2: Distribute 100 points to your #1 (most preferred) alternative
- STEP 3: Distribute a lesser amount of points to your next 'most preferred' alternative according to how well it meets your needs


Direct Ranking FORM 1 - Alternatives

Your Name:

		Rank	Weight
Alternative 1	Status Quo	3	50 4
Alternative 2	Naturalized Hydrograph	2	95
Alternative 3	Salmon Migration Temperature	6	1
Alternative 4	Cheslatta Aquatic Species / Ecosystems	1	100
Alternative 5	Wildlife (Reservoir)	4	45
Alternative 6	Reservoir Aquatic Species / Ecosystems	5	10


On-Line Direct Ranking Form 1 - AltaViz



On-Line Direct Ranking Form 1 - AltaViz

On-Line Direct Ranking Form 1 - AltaViz

Swing Weighting Exercise

Swing Weighting

- An alternative way to identify your preferred alternatives according to the performance measures
- Provides a way to gain insight into the relative importance of each performance measure according to the improvements (worst to best) that can be made
- "Swing" refers to the importance of moving one performance measure from its worst to best value

- STEP 1: Review each performance measure within each category according to the most important to you to change from worst to best value
- STEP 2: Assign 100 points to the most important PM to swing from its worst to best value
- STEP 3: Repeat for each remaining PMs by assigning a lower number of points for the importance to swing its value from worst to best relative to your most important PM

for example...

Criteria	Performance Measure	Unit	Worst	Best	Points
Fish					
			Median: 85	Median: 169.1	
			Median: 157.9	Median: 80.5	
			Median: 386	Median 162.3	
			Median: 28	Median: 21	
			Median: 5	Median: 1	
#21a River Chinook incubation flow	Ratio of min incubation flow to average spawning flow	%	Median: 12.3	Median: 50	100
#22a River CH rearing habitat Post- emergent Habitat	Amount of post-emergent habitat (Envirocon curve)	M2	Median: 574,511	Median: 771,723	
			Median: 216,831	Median: 670,198	

Criteria	Performance Measure	Unit	Worst	Best	Points
Fish					
#6 River fish access to side /off channels			Median: 85	Median: 169.1	
			Median: 157.9	Median: 80.5	
#17 Cheslatta watershed fish habitat	Range of flow	CMS	Median: 386	Median 162.3	100
#18a River water temperature and migrating salmon	Number of days average daily temp exceeds 18C	Days	Median: 28	Median: 21	
			Median: 5	Median: 1	
#21a River Chinook incubation flow	Ratio of min incubation flow to average spawning flow	%	Median: 12.3	Median: 50	100
#22a River CH rearing habitat Post- emergent Habitat	Amount of post-emergent habitat (Envirocon curve)	M2	Median: 574,511	Median: 771,723	
			Median: 216,831	Median: 670,198	

Criteria	Performance Measure	Unit	Worst	Best	Points
Fish		;			
			Median: 85	Median: 169.1	
			Median: 157.9	Median: 80.5	
#17 Cheslatta watershed fish habitat	Range of flow	CMS	Median: 386	Median 162.3	100
#18a River water temperature and migrating salmon	Number of days average daily temp exceeds 18C	Days	Median: 28	Median: 21	
			Median: 5	Median: 1	
#21a River Chinook incubation flow	Ratio of min incubation flow to average spawning flow	%	Median: 12.3	Median: 50	100
#22a River CH rearing habitat Post- emergent Habitat	Amount of post-emergent habitat (Envirocon curve)	M2	Median: 574,511	Median: 771,723	
#25a Resident fish rearing habitat	Average juvenile habitat	M2	Median: 216,831	Median: 670,198	50

	Criteria	Performance Measure	Unit	Worst	Best	Points
	Fish	,		:		
>	#6 River fish access to side /off channels	Average Flow	CMS	Median: 85	Median: 169.1	45
>	#12 Reservoir productivity-flushing	Average discharge	CMS	Median: 157.9	Median: 80.5	15
•	#17 Cheslatta watershed fish habitat	Range of flow	CMS	Median: 386	Median 162.3	100
>	#18a River water temperature and migrating salmon	Number of days average daily temp exceeds 18C	Days	Median: 28	Median: 21	40
	#18c River water temperature and migrating salmon	Number of days average daily temp exceeds 20C	Days	Median: 5	Median: 1	25
	#21a River Chinook incubation flow	Ratio of min incubation flow to average spawning flow	%	Median: 12.3	Median: 50	100
>	#22a River CH rearing habitat Post- emergent Habitat	Amount of post-emergent habitat (Envirocon curve)	M2	Median: 574,511	Median: 771,723	5
	#25a Resident fish rearing habitat	Average juvenile habitat	M2	Median: 216,831	Median: 670,198	50

Criteria	Performance Measure	Unit	Worst	Best	Points
Wildlife					
* #32 Reservoir caribou land links	# of days water elevation is > 852 m	Days	Median: 0	Median: 36	45
* #38 Reservoir osprey nesting habitat	Number of years where reservoir elevation exceeds 852.44m	Years	25	10	15
#41b Reservoir wetland habitat	Number of years where reservoir elevation exceeds 852.94 m	Years	6	18	100
* #45b River bird inundation of nests	Number of years where Cheslatta discharge exceeds 275 cms	Years	31	2	40
Culture & Heritage		I			

On-Line Swing Weighting Form 2 – AltaViz

Welcome, iyg

Swing Weighting

Swing Weighting

Imagine you live in a world where all of the performance measures (PMs) take on their worst value. Now suppose that you are able to change one (and only one) PM from its worst to its best value. Which PM would you choose? Consider both the inherent importance of the PM and the magnitude of the change. Assign 100 points to this PM.

Choose the next most important PM to change from worst to best. Assign points to reflect the importance of this change relative to the first PM. (For example, if it is half as important, assign it 50 points.)

Continue until you have assigned points to all the PMs. Ties are ok.

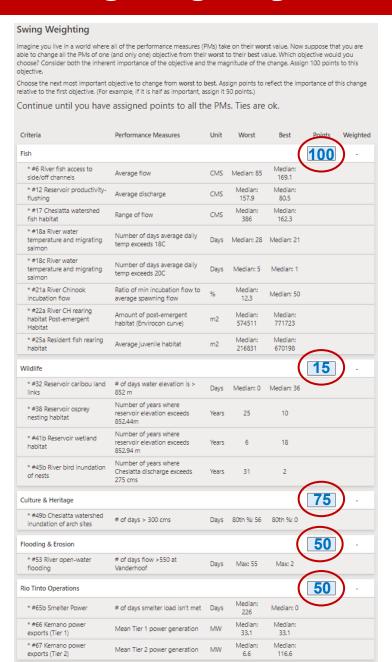
Rio Tinto Operations

Criteria	Performance Measures	Unit	Worst	Best	Points	Weighted
* #65b Smelter Power	# of days smelter load isn't met	Days	Median: 226	Median: 0	100	-
* #66 Kemano power exports (Tier 1)	Mean Tier 1 power generation	MW	Median: 33.1	Median: 33.1	25	-
* #67 Kemano power exports (Tier 2)	Mean Tier 2 power generation	MW	Median: 6.6	Median: 116.6	75	-

Back

STEP 4: Review each Category of PMs relative to one another for moving the entire set of PMs from worst to best value

STEP 5: Assign 100 points to the most important Category of PMs to swing from their worst to best value


STEP 6: Repeat for each remaining Category of PMs by assigning a lower number of points relative to your most important PM

for example...

Criteria	Performance Measure	Unit	Worst	Best	Points
Fish		•		1	100
#6 River fish access to side /off channels	Average Flow	CMS	Median: 85	Median: 169.1	
#12 Reservoir productivity-flushing	Average discharge	CMS	Median: 157.9	Median: 80.5	
#17 Cheslatta watershed fish habitat	Range of flow	CMS	Median: 386	Median 162.3	
#18a River water temperature and migrating salmon	Number of days average daily temp exceeds 18C	Days	Median: 28	Median: 21	
#18c River water temperature and migrating salmon	Number of days average daily temp exceeds 20C	Days	Median: 5	Median: 1	
#21a River Chinook incubation flow	Ratio of min incubation flow to average spawning flow	%	Median: 12.3	Median: 50	
#22a River CH rearing habitat Post- emergent Habitat	Amount of post-emergent habitat (Envirocon curve)	M2	Median: 574,511	Median: 771,723	
#25a Resident fish rearing habitat	Average juvenile habitat	M2	Median: 216,831	Median: 670,198	
Wildlife					15
* #32 Reservoir caribou land links	# of days water elevation is > 852 m	Days	Median: 0	Median: 36	
* #38 Reservoir osprey nesting habitat	Number of years where reservoir elevation exceeds 852.44m	Years	25	10	
#41b Reservoir wetland habitat	Number of years where reservoir elevation exceeds 852.94 m	Years	6	18	
* #45b River bird inundation of nests	Number of years where Cheslatta discharge exceeds 275 cms	Years	31	2	
Culture & Heritage					(75)
* #49b <u>Cheslatta</u> watershed inundation of arch sites	# <u>of</u> days > 300 <u>cms</u>	Days	80 th %: 56	80 th %: 0	
Flooding & Erosion					50
* #53 River open-water flooding	# of days flow >550 at Vanderhoof	Days	Max: 55	Max: 2	
Rio Tinto Operations					(50)
* #65b Smelter Power	# of days smelter load isn't met	Days	Median: 226	Median: 0	\setminus
* #66 Kemano power exports (Tier 1)	Mean Tier 1 power generation	MW	Median: 33.1	Median: 33.1	
* #67 Kemano power exports (Tier 2)	Mean Tier 2 power generation	MW	Median: 6.6	Median: 116.6	

Criteria	Performance Measure	Unit	Worst	Best	Points
Fish		,			(100)
#6 River fish access to side /off channels	Average Flow	CMS	Median: 85	Median: 169.1	
#12 Reservoir productivity-flushing	Average discharge	CMS	Median: 157.9	Median: 80.5	
#17 Cheslatta watershed fish habitat	Range of flow	CMS	Median: 386	Median 162.3	
#18a River water temperature and migrating salmon	Number of days average daily temp exceeds 18C	Days	Median: 28	Median: 21	
#18c River water temperature and migrating salmon	Number of days average daily temp exceeds 20C	Days	Median: 5	Median: 1	
#21a River Chinook incubation flow	Ratio of min incubation flow to average spawning flow	%	Median: 12.3	Median: 50	
#22a River CH rearing habitat Post- emergent Habitat	Amount of post-emergent habitat (Envirocon curve)	M2	Median: 574,511	Median: 771,723	
#25a Resident fish rearing habitat	Average juvenile habitat	M2	Median: 216,831	Median: 670,198	
Wildlife					15
* #32 Reservoir caribou land links	# of days water elevation is > 852 m	Days	Median: 0	Median: 36	
* #38 Reservoir osprey nesting habitat	Number of years where reservoir elevation exceeds 852.44m	Years	25	10	
#41b Reservoir wetland habitat	Number of years where reservoir elevation exceeds 852.94 m	Years	6	18	
* #45b River bird inundation of nests	Number of years where Cheslatta discharge exceeds 275 cms	Years	31	2	
Culture & Heritage					(75)
* #49b <u>Cheslatta</u> watershed inundation of arch sites	# <u>of</u> days > 300 <u>cms</u>	Days	80 th %: 56	80 th %: 0	
Flooding & Erosion					50
* #53 River open-water flooding	# of days flow >550 at Vanderhoof	Days	Max: 55	Max: 2	
Rio Tinto Operations					50
* #65b Smelter Power	# of days smelter load isn't met	Days	Median: 226	Median: 0	
* #66 Kemano power exports (Tier 1)	Mean Tier 1 power generation	MW	Median: 33.1	Median: 33.1	
* #67 Kemano power exports (Tier 2)	Mean Tier 2 power generation	MW	Median: 6.6	Median: 116.6	

On-Line Swing Weighting Form 3 – AltaViz

Phase 1 Bookend Alternatives

Results from Ranking Exercises

Clayton...

Assessing Bookend Alternatives

- Selecting First Round Flow Alternatives

Selecting Round 1 Flow Alternatives

Name	Which to Carry Forward	What Improvements Should be Made to them (Intent)?
Alt 1 Status Quo		
Alt 2 Nechako Aquatic Species		
Alt 3 Sockeye Migration		
Alt 4 Cheslatta Aquatic Species		
Alt 5 Wildlife (Reservoir)		
Alt 6 Reservoir Aquatic Species		
Alt 7 Flood Mitigation		
New Ideas ??		

Next Steps