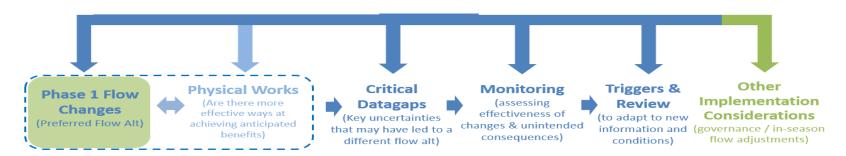
Water Engagement Initiative Main Table Meeting 31


Thursday, June 29, 2023, 9:00 am to 4:00 pm

Vanderhoof Community Event Centre

Meeting Objectives

- To provide an update since our last meeting,
- To review and assess the performance of the P1 Round 2 Flow Alternatives
- To discuss and identify preferred Flow Alternative(s); and, whether there are new and improved flow alternatives to model and assess at the next meeting?
- To discuss other flow related recommendations that would make up a "Package" of Phase 1 Recommendations

To discuss our upcoming workplan and any next steps

Agenda (Day 2)

Thursday, June 29, 2023

9:00 am: Overview of Day 2

9:30 am: Assessing the Flow Alternatives: Performance Measures

10:45 am: Break

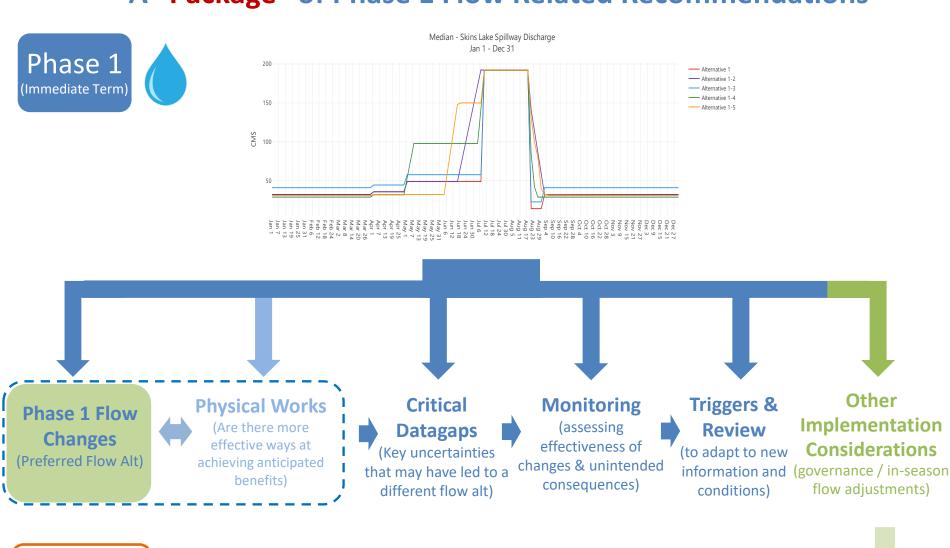
11:00 am: Ranking the Flow Alternatives: Exercises

12:00 pm: Lunch

12:45 pm: Reaching Agreement on P1 Flow Alterns and Next Steps

2:00 pm: Intro "Package" of Phase 1 Flow Related Recdns

2:15 pm: Break


2:30 pm: Package of Phase 1 Flow Related Recommendations

3:45 pm: Next steps

4:00 pm: Adjourn

Working Towards the End of Phase 1

A "Package" of Phase 1 Flow Related Recommendations

Review & Re-Assess Flow Changes

Phase 1

Assessing Round 2 Flow Alternatives

- TWG Shortlisted Performance Measures

Katie Healey Jayson Kurtz

Median

Average discharge

Slaney et al. 1984)

of days > 300 cms

of days flow >550 at Vanderhoof

of days smelter load isn't met

Mean Tier 2 power generation

Tier 1 power reliability

of days water elevation is > 852 m

Number of days average daily temp exceeds 18C

Number of days average daily temp exceeds 20C

Ratio of min incubation flow to average spawning flow

Percent of max available pre-migrant habitat (modified

Percent of maximum available juvenile Rainbow Trout

Percent of max available overwintering habitat (mod.

Number of years where reservoir elevation exceeds

Number of years where reservoir elevation exceeds 852.94

Number of years where Cheslatta discharge exceeds 275

Percent of max available post-emergent habitat (modified

Range of flow

* #12 Reservoir productivity-flushing

* #17 Cheslatta watershed fish habitat

* #21a River Chinook incubation flow

* #25a Resident fish rearing habitat

#26 Resident fish overwinter habitat

* #32 Reservoir caribou land links

* #41b Reservoir wetland habitat

* #53 River open-water flooding

* #66b Kemano power reliability (Tier 1)

* #67 Kemano power exports (Tier 2)

Culture & Heritage

Flooding & Erosion

Rio Tinto Operations

* #65b Smelter Power

* #45b River bird inundation of nests

* #49b Cheslatta watershed inundation of arch sites

* #38 Reservoir osprey nesting habitat

Wildlife

* #18a River water temperature and migrating salmon

* #18c River water temperature and migrating salmon

* #22a V2 River CH rearing habitat post-emergent Habitat

* #22b V2 River CH rearing habitat pre-migrant habitat

91.5

187.8

NA

NA

48.4

100

83.9

66

95.6

6.5

10

8

5

0.2

2

0

96.98

119.7

92.3

187.8

NA

NA

48.3

100

78.4

66.1

95.6

8

4

0.2

0

0

96.29

125.1

89.9

187.8

NA

NA

49

100

83.9

66

96.4

7.5

10

8

4

0.4

0

0

96.98

Alt 5C

EWRS

93

85.7

191.8

29.5

5

50.2

100

78.7

66.7

95.6

9.5

12

8

5

2

6

0

96.98

137.7

Alt 5D

EWRS_WYF

98.2

90.3

187.8

NA

NA

48.9

100

77.4

66.2

96.4

8

4

0.2

0

0

95.92

120.3

Cutting	j t	o the Ci	has	se.					
Criteria		Performance Measures	Unit	PreferredMSIC Direction	Alt 1 Status Quo	Alt 3D EWRS_WYF	Alt 4B SQ_WYF	Alt 4D EWRS_WYF	Alt 5B SQ_WYF
Fish									
* #6 River fish access to side/off channels	Median	Average flow	CMS	Higher 20%	92.6	94	98.8	99.3	97.7

CMS

CMS

Days

Days

%

%

%

%

Days

Years

Years

Days

Days

Days

%

MW

Lower 20%

Lower

Lower 20%

Lower

Higher 20%

Lower 20%

Lower

Lower 7

Lower 7

Higher 5

Higher 20

Lower 20%

20%

20%

84.9

191.8

30.5

5.5

50.3

100

84.8

66.2

95.6

8

12

8

5

2.2

0 96.98

136.3

86.1

187.9

NA

NA

53.1

100

80.7

69.6

99

11

8

5

0

0

96.98

102.5

						- All		
eria	Performance Measures	Unit	PreferredMSIC Direction	Alt 1 Status Quo	Alt 3D EWRS_WYF	Alt 4B SQ_WYF	Alt 4D EWRS_WYF	Alt 5B SQ_WYF

Cutting t	o the t	CHUS						
teria	Performance Measures	Unit	PreferredMSIC Direction	Alt 1 Status Quo	Alt 3D EWRS_WYF	Alt 4B SQ_WYF	Alt 4D EWRS_WYF	Alt SQ_V

Assessing Flow Alternatives – Performance Measures

Round 2 Performance Measures

Pre-Read, Page 9

- TWG reviews shortlist, MSIC each round
- Same 19 shortlisted PMs as last meeting:
 - 6 River fish access to side/off channels
 - 12 Reservoir productivity-flushing
 - 17 Cheslatta watershed fish habitat
 - 18a River water temperature and migrating salmon (18C)
 - 18c River water temperature and migrating salmon (20C)
 - 21a River Chinook incubation flow
 - 22a River Chinook rearing habitat

Round 2 Performance Measures

Pre-Read, Page 9

- 25a Resident fish rearing habitat
- 32 Reservoir caribou land links
- 38 Reservoir osprey nesting habitat
- 41b Reservoir wetland habitat
- 45b River bird inundation of nests
- 49b Cheslatta watershed inundation of archeological sites
- 53 River open-water flooding
- 65 Kemano power generation (smelter load)
- 66 Kemano power exports (Tier 1)
- 67 Kemano power exports (Tier 2)

Round 2 Shortlist PMs cont'd

- Recognition that not all PMs are "equal": data dependent
 - Flow curve
 - Threshold
 - Ratio
 - Range
 - Direction
- PM confidence assessment
- Data gap assessment

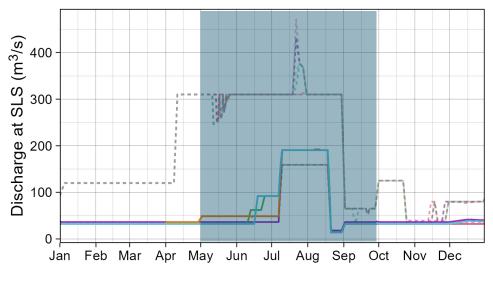
PM Confidence

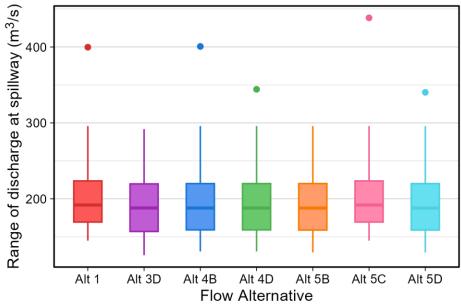
PM Number	PM Status	Consolidated Issue Name	Performance Measure	Overall Confidence (in PM)
6	shortlist	River fish access to side/off channels	average flow (more is better)	Low
12	shortlist	Reservoir productivity-flushing	Average discharge (less is better)	High
17	shortlist	Cheslatta watershed fish habitat	range of flow (less is better)	Low
18	shortlist	River water temperature and migrating salmon	PM1: # of days average daily temp exceeds 18C (fewer is better)	High
18	shortlist	River water temperature and migrating salmon	PM3: # of days average daily temp exceeds 20C (fewer is better)	High
21	shortlist	River CH incubation flow	Ratio of min incubation flow to average spawning flow (higher is better)	Moderate
22	shortlist	River CH rearing habitat	Percent of maximum available pre-migrant habitat (modified Envirocon)	Moderate
22	shortlist	River CH rearing habitat	Percent of maximum available post-emergent habitat (modified Envirocon)	Moderate
25	shortlist	Resident fish rearing habitat	Percent of maximum available juvenile habitat (Modified Slaney et al. 1984) (more is better)	Moderate
26	shortlist	Resident fish overwinter habitat	Percent of maximum available overwintering habitat (modified Slaney et al. 1984)	Moderate
32	shortlist	Reservoir caribou land links	# of days water elevation is > 852 m (more is better)	Moderate
38	shortlist	Reservoir osprey nesting habitat	Number of years where reservoir elevation exceeds 852.44m (fewer is better)	Moderate
41	shortlist	Reservoir wetland habitat	Number of years where reservoir elevation exceeds 852.94 m (more is better)	Moderate
45	shortlist	River bird inundation of nests	Number of years where Cheslatta discharge exceeds 275 cms (fewer is better)	Low
49	shortlist	Cheslatta watershed inundation of archeological sites	PM2: # of days > 300 cms (fewer is better)	Low
53	shortlist	River open-water flooding	# of days flow >550 m ³ /s (fewer is better)	High
65	shortlist	Kemano power generation	# of days smelter load isn't met (fewer is better)	High
66	shortlist	Kemano power reliability	Tier 1 reliability (more is better)	High
67	shortlist	Kemano power exports	Mean Tier 2 power generation (more is better)	High

General Results

Pre-Read, Page 48

Alternative	Performs Well For
Alt 1 (Status Quo)	
Alternative 3D	Caribou land links
Alternative 4B	Cheslatta fish habitat
Alternative 4D	Cheslatta fish habitat, reservoir osprey nests, Tier 2
Alternative 5B	Cheslatta fish habitat
Alternative 5C	Caribou land links, Tier 2
Alternative 5D	Cheslatta fish habitat, reservoir osprey nests

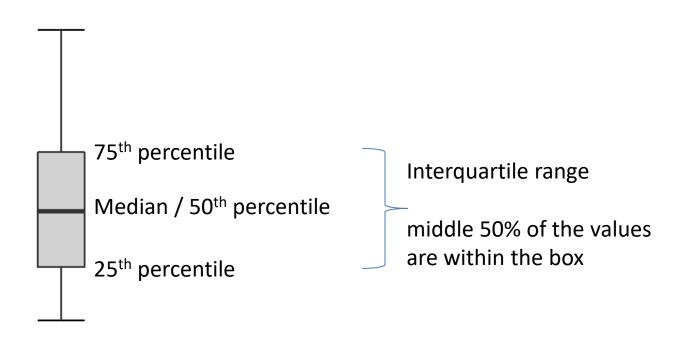



Example - Issue #17: Cheslatta watershed fish habitat

Pre-Read, Page 39

PM17: Range of flow	Location:	Cheslatta Watershed (primarily river)
	Timing:	May 1 - Sept 30
	Unit:	CMS
	Direction:	Less is better
	MSIC:	20%

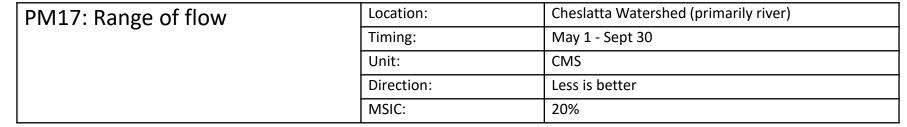
the manner of



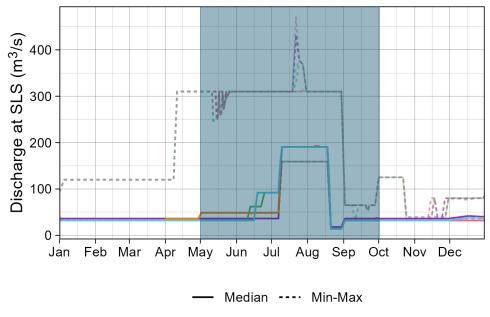
— Median --- Min-Max

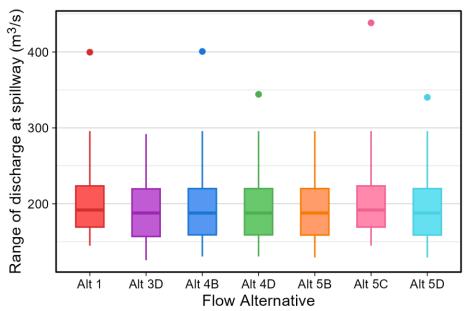
GET INVOLVED NECHAKO

Box Plots



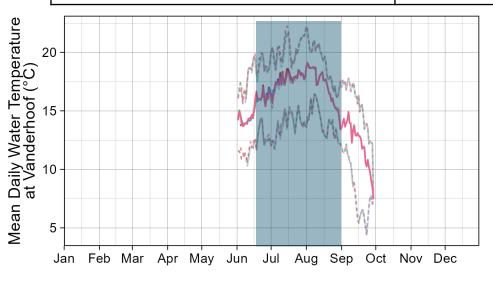
Outlier

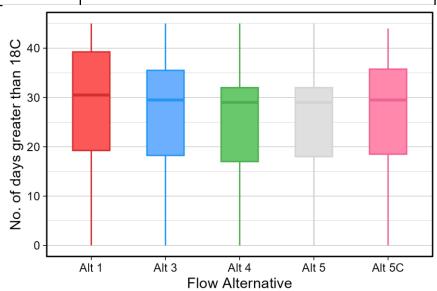



Issue #17: Cheslatta watershed fish habitat

Pre-Read, Page 39

an mana


Issue #18a: River water temperature and migrating salmon Pre-Read, Page 39


the manner of

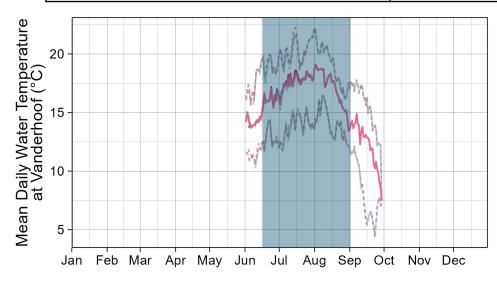
PM18: River water temperature and migrating salmon

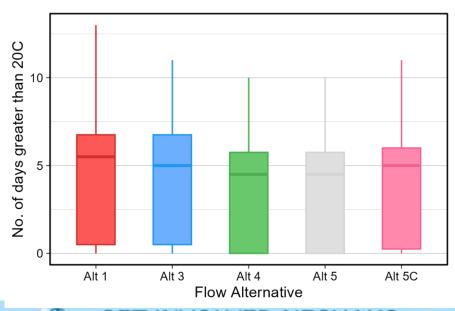
a) Days > 18C

Location:	Chinook: entire Nechako River
	Sockeye: Below confluence of Stuart River
Timing:	Salmon migration period: Jun 15 – Aug 29
Unit:	Days
Direction:	Fewer is better
MSIC:	20%

— Median --- Min-Max

GET INVOLVED NECHAKO


Issue #18c: River water temperature and migrating salmon Pre-Read, Page 39

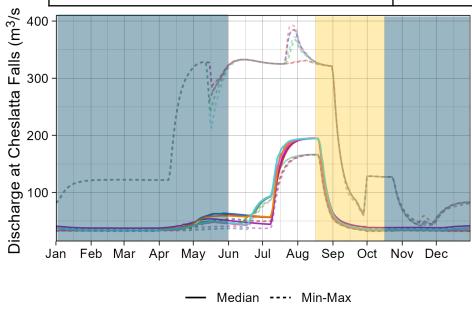

t name

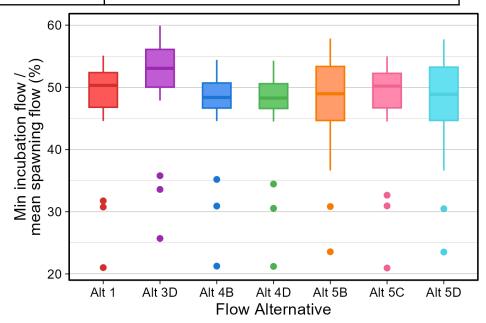
PM18: River water temperature and migrating salmon

c) Days > 20C

Location:	Chinook: entire Nechako River
	Sockeye: Below confluence of Stuart River
Timing:	Salmon migration period: Jun 15 – Aug 29
Unit:	Days
Direction:	Fewer is better
MSIC:	20%

— Median --- Min-Max

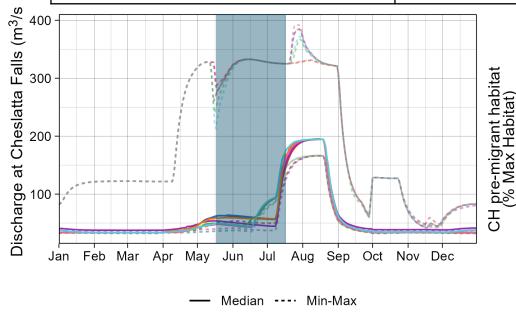

GET INVOLVED NECHAKO

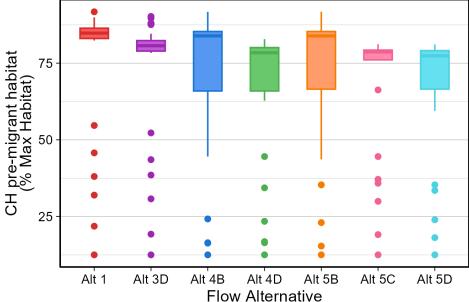

Issue #21a:River Chinook incubation flow Pre-Read, Page 40

Timme .

PM21a: Ratio of min incubation flow to average spawning flow

Location:	Nechako River below Cheslatta Falls
Timing:	Aug 15 – May 31
Unit:	%
Direction:	Higher
MSIC:	20%


Issue #22b: River Chinook rearing habitat


t p maner

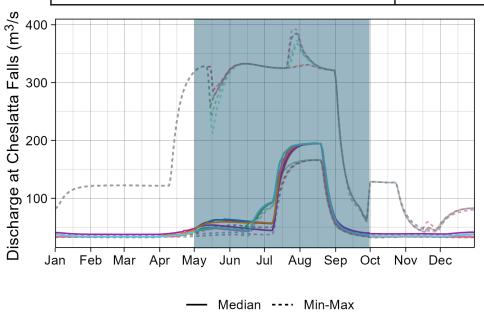
Pre-Read, Page 40

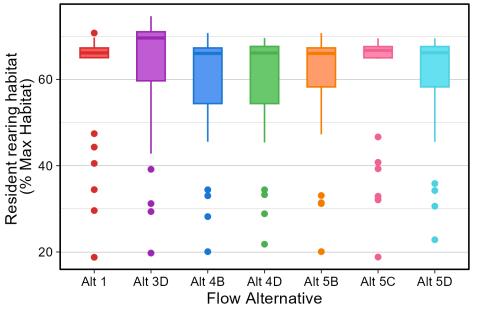
PM22b: Percent of maximum available pre-migrant habitat (modified Envirocon curve)

Location:	Nechako River below Cheslatta Falls
Timing:	May 15 – July 15
Unit:	% of max available habitat
Direction:	More is better
MSIC:	20%

GET INVOLVED NECHAKO

Issue #25a: Resident fish rearing

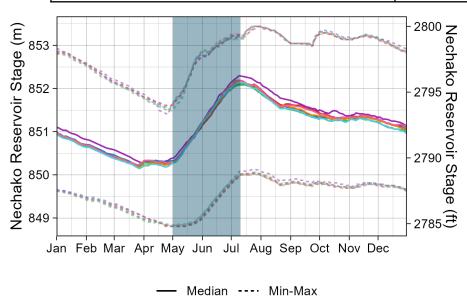

the second

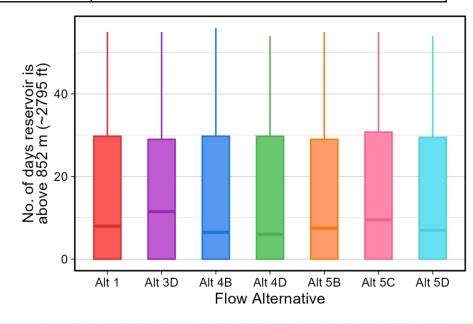

habitat

Pre-Read, Page 41

PM25a: Percent of maximum available juvenile Rainbow Trout habitat (modified Slaney et al.1984 curve).

Location:	Nechako River below Cheslatta Falls
Timing:	May 1 – Sept 31
Unit:	% of max available habitat
Direction:	More is better
MSIC:	20%


Issue #32: Reservoir caribou land links

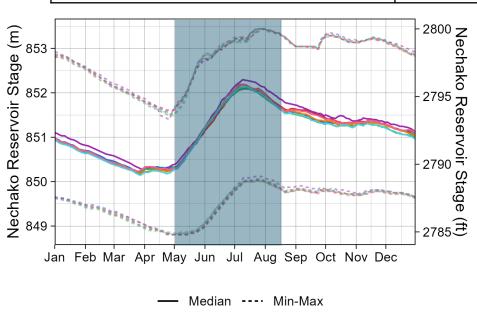

de mane

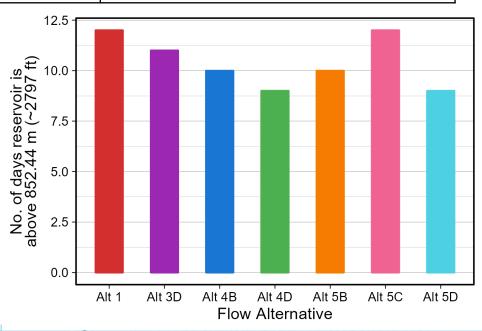
Pre-Read, Page 41

PM32: # Of days water elevation is > 852 m

Location:	Nechako Reservoir
Timing:	May 1 – July 7
Unit:	Days
Direction:	More is better
MSIC:	20%

GET INVOLVED NECHAKO


Issue #38: Reservoir osprey nesting habitat

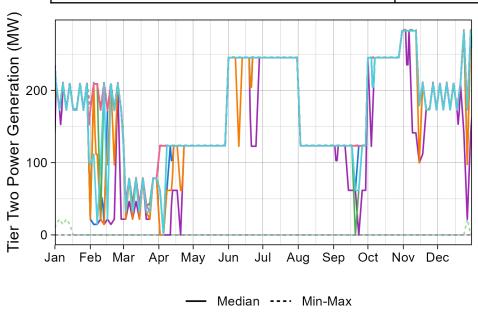

of many

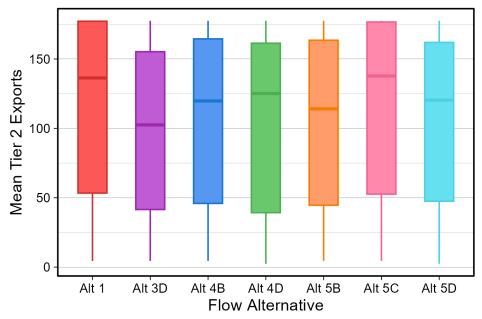
Pre-Read, Page 42

PM38: Number of years where reservoir elevation exceeds 852.44m

Location:	Nechako Reservoir
Timing:	Spring nesting period May 1 – Aug 15
Unit:	Years
Direction:	Fewer is better
MSIC:	20%

Issue #67: Kemano power exports Tier


C man


2

Pre-Read, Page 44

PM67: Mean Tier 2 power generation

Location:	Kemano / Kitimat
Timing:	Jan 1 – Dec 31
Unit:	%
Direction:	More is better
MSIC:	20

GET INVOLVED NECHAKO

Phase 1 Assessing Round 2 Flow Alternatives

- Commentary

Katie Healey Jayson Kurtz

Commentary: Round 1 Flow Alternatives

Alt 1 Status Quo	The Status Quo performs well for Tier 2 power generation, but does not perform well for reservoir osprey nesting habitat. While temperature modelling was not completed for the hybrid alternatives, based on what we've learned about flow and temperature, it is likely that this alternative does not perform as well as hybrid alternatives for water temperature.
Alt 3D	Alt 3D (higher flows during both wet and dry years) performs best for caribou land links, and does not perform well for Tier 2 power generation. Other PMs showed no difference from status quo or other alternatives.
Alt 4B	Alt 4B (multi-step flow increase leading to STMP, status quo in dry years) does not perform well for caribou land links. Water temperature modelling was not completed for the hybrid flow alternatives, however the temperature modelling results for Alt 4A suggest potential improvements to water temperature during the years where additional flow is available (compared to the status quo). Other PMs showed no difference from status quo or other alternatives
Alt 4D	Alt 4D (multi-step flow increase leading to STMP during wet years, smaller magnitude stepped increase during dry/typical years) does not perform well for caribou land links, similar to Alt 4B. However, Alt 4D performs well for reservoir osprey nesting habitat, river bird nests, and Tier 2 power. Additionally, the temperature modelling results for Alt 4A suggest potential improvements to water temperature during the years where additional flow is available (compared to the status quo). Other PMs showed no difference from status quo or other alternatives.

Commentary: Round 1 Flow Alternatives

Alt 5B	Alt 5B (high reservoir elevation in wet years, status quo during dry to typical years) does not perform well for reservoir caribou land links or Tier 2 power generation, and performs well for river bird nests. Water temperature modelling was not completed for the hybrid flow alternatives, however the temperature modelling results for Alt 5A suggest potential improvements to water temperature during the years where additional flow is available (compared to the status quo). Other PMs showed no difference from status quo or other alternatives.
Alt 5C	Alt 5C (current water budget reshaped during all years) performs well for reservoir caribou land links, and performs best for Tier 2 power generation. Alt 5C does not perform well for reservoir osprey nesting, and while it does not result in additional years where Vanderhoof flood flows would be exceeded, the duration of flooding during the most extreme year is predicted to be the greatest at 6 days (compared to 0 to 2 days in other alternatives). Other PMs showed no difference from status quo or other alternatives
Alt 5D	Similar to Alt 5B , Alt 5D does not perform well for reservoir caribou land links, but performs well for reservoir osprey nesting. Additionally, Alt 5D performs well for river bird nest inundation, and performs better than Alt 5B for Tier 2 power. The temperature modelling results for Alt 5A suggest potential improvements to water temperature during the years where additional flow is available (compared to the status quo). Other PMs showed no difference from status quo or other alternatives.
General	In general, the hybrid alternatives (Round 2 "B" & "D") provide improvements over the stand-alone Round 1 alternatives. The hybrid alts with the reshaped flows during dry to typical years (Round 2 "D") perform better than those that have the status quo during dry to typical years (Round 2 "B"). However, the overall, the improvements over status quo are subtle.

Phase 1

Assessing Round 2 Flow Alternatives

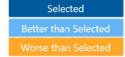
- Consequence Table

Consequence Table: Round 2 Flow Alternative

Consequence Table 1

Selected

Better than Selected


Worse than Selecte

Same as Selected

											same a	s Selected
Criteria		Performance Measures	Unit	Preferred Direction		Alt 1 Status Quo	Alt 3D EWRS_WYF	Alt 4B SQ_WYF	Alt 4D EWRS_WYF	Alt 5B SQ_WYF	Alt 5C EWRS	Alt 5D EWRS_WYF
Fish												
* #6 River fish access to side/off channels	Median	Average flow	CMS	Higher	20%	92.6	94	98.8	99.3	97.7	93	98.2
* #12 Reservoir productivity-flushing	Median	Average discharge	CMS	Lower	20%	84.9	86.1	91.5	92.3	89.9	85.7	90.3
* #17 Cheslatta watershed fish habitat	Median	Range of flow	CMS	Lower	20%	191.8	187.9	187.8	187.8	187.8	191.8	187.8
* #18a River water temperature and migrating salmon	Median	Number of days average daily temp exceeds 18C	Days	Lower	20%	30.5	NA	NA	NA	NA	29.5	NA
* #18c River water temperature and migrating salmon	Median	Number of days average daily temp exceeds 20C	Days	Lower	20%	5.5	NA	NA	NA	NA	5	NA
* #21a River Chinook incubation flow	Median	Ratio of min incubation flow to average spawning flow	%	Higher	20%	50.3	53.1	48.4	48.3	49	50.2	48.9
* #22a V2 River CH rearing habitat post-emergent Habitat	Median	Percent of max available post-emergent habitat (modified Envirocon)	%	Higher	20%	100	100	100	100	100	100	100
* #22b V2 River CH rearing habitat pre-migrant habitat	Median	Percent of max available pre-migrant habitat (modified Envirocon)	%	Higher	20%	84.8	80.7	83.9	78.4	83.9	78.7	77.4
* #25a Resident fish rearing habitat	Median	Percent of maximum available juvenile Rainbow Trout habitat	%	Higher	20%	66.2	69.6	66	66.1	66	66.7	66.2
#26 Resident fish overwinter habitat	Median	Percent of max available overwintering habitat (mod. Slaney et al. 1984)	%	Higher	20%	95.6	99	95.6	95.6	96.4	95.6	96.4
Wildlife												
* #32 Reservoir caribou land links	Median	# of days water elevation is > 852 m	Days	Higher	20%	8	11.5	6.5	6	7.5	9.5	7
* #38 Reservoir osprey nesting habitat		Number of years where reservoir elevation exceeds 852.44m	Years	Lower	20%	12	11	10	9	10	12	9
* #41b Reservoir wetland habitat		Number of years where reservoir elevation exceeds 852.94 m	Years	Higher	20%	8	8	8	8	8	8	8
* #45b River bird inundation of nests		Number of years where Cheslatta discharge exceeds 275 cms	Years	Lower	20%	5	5	5	4	4	5	4
Culture & Heritage	,,											
* #49b Cheslatta watershed inundation of arch sites	80th %	# of days > 300 cms	Days	Lower	7	2.2	4	0.2	0.2	0.4	2	0.2
Flooding & Erosion												
* #53 River open-water flooding	(Max	# of days flow >550 at Vanderhoof	Days	Lower	7	2	0	2	0	0	6	0
Rio Tinto Operations												
* #65b Smelter Power	(Max)# of days smelter load isn't met	Days	Lower	7	0	0	0	0	0	0	0
* #66b Kemano power reliability (Tier 1)	10000	Tier 1 power reliability	%	Higher	5	96.98	96.98	96.98	96.29	96.98	96.98	95.92
* #67 Kemano power exports (Tier 2)	Median	Mean Tier 2 power generation	MW	Higher	20	136.3	102.5	119.7	125.1	114.1	137.7	120.3

Consequence Table: Round 2 Flow Alternative "Condensed"

(Only PMs with Differences > MSIC)

Same as Selected

Criteria			Performance Measures	Unit	Preferred Direction	MSIC	Alt 1 Status Quo	Alt 3D EWRS_WYF	Alt 4B SQ_WYF	Alt 4D EWRS_WYF	Alt 5B SQ_WYF	Alt 5C EWRS	Alt 5D EWRS_WYF
Fish	1	٠.											
* #17 Cheslatta watershed fish habitat	/ 80th	1 96	N Range of flow	CMS	Lower	20%	295.8	270.6	234.6	234.6	233.8	295.8	233.8
* #21a River Chinook incubation flow	<i>i</i> N	⁄lin	Ratio of min incubation flow to average spawning flow	96	Higher	20%	21	25.7	21.3	21.2	23.6	21	23.5
* #22b V2 River CH rearing habitat pre-migrant habitat	20th	1 96	Aercent of max available pre-migrant habitat (modified Envirocon)	96	Higher	20%	76.8	73.1	59.6	59.1	64.5	61.9	65.1
* #25a Resident fish rearing habitat	N	⁄lin	Percent of maximum available juvenile Rainbow Trout habitat	96	Higher	20%	18.8	19.8	20.1	21.8	20.1	18.8	22.8
Wildlife			i										
* #32 Reservoir caribou land links	Med	ian	# of days water elevation is > 852 m	Days	Higher	20%	8	11.5	6.5	6	7.5	9.5	7
* #38 Reservoir osprey nesting habitat	١		Number of years where reservoir elevation exceeds 852.44m	Years	Lower	20%	12	11	10	9	10	12	9
Rio Tinto Operations	'		!										
* #67 Kemano power exports (Tier 2)	Med	ian	Mean Tier 2 power generation	MW	Higher	20	136.3	102.5	119.7	125.1	114.1	137.7	120.3
	•	1											

AltaViz – Online Tool

https://www.altaviz.ca/public/220db3fc-2aa8-4eea-9dd1-e3a26c4bb97a

Access Code: NECHAKOWEI

Phase 1

Assessing Round 2 Flow Alternatives

- Exercises

Phase 1 Round 1 Flow Alternatives Ranking Exercise

Purpose:

- To get a better sense of people's priorities & preferences
- To identify which Round 2 Flow Alternative are "Preferred"
- To also identify which flow alternatives would be "Endorsed" or "Accepted" by Main Table members
- To explore whether there are new and improved flow alternatives (Round 3) that make sense to model and assess at the next meeting (e.g., Fall 2023)?

Round 2 Flow Alternatives

Ranking Exercises

- 2 exercises will be undertaken today,
- 1. "Direct Ranking" is an intuitive technique where you will be asked directly which alternative(s) you prefer most

- 2. "Straw Poll on Level of Support" is a way to characterize the level of acceptance as a group and gauge the importance and "significance" of making any Phase 1 flow changes.

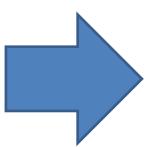
The goal is to get a sense of our preferences as a group in order to build an understanding of where consensus may lie?

Exercise 1

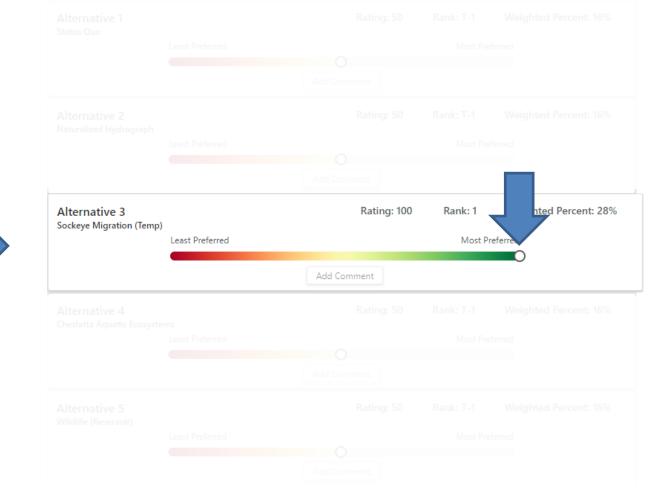
Direct Ranking

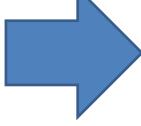
You will be asked to indicate which alternatives are your 'most preferred' and 'least preferred', the steps are:

- STEP 1: Rank each alternative from best to worst according to how well the alternatives are meeting your interests
- STEP 2: Distribute 100 points to your most preferred alternative
- STEP 3: Distribute a lesser amount of points to your next 'most preferred' alternative according to how well it meets your needs

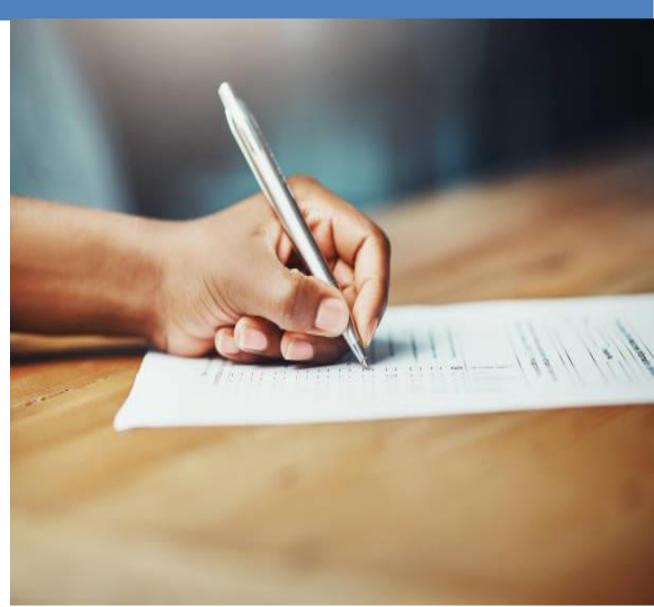

Your Name:	

Direct Rating – Give your most preferred alternative a rating of 100. Rate each remaining alternative relative to your most preferred.


Alternative	Rating (0-100)	Comment
Alt 1 – Status Quo	75	
Alt 3D	95	
Alt 4B	45	1
Alt 4D	45	
Alt 5B	25	
Alt 5C	100	
Alt 5D	15	


On-Line Direct Ranking Form 1 - AltaViz

On-Line Direct Ranking Form 1 - AltaViz

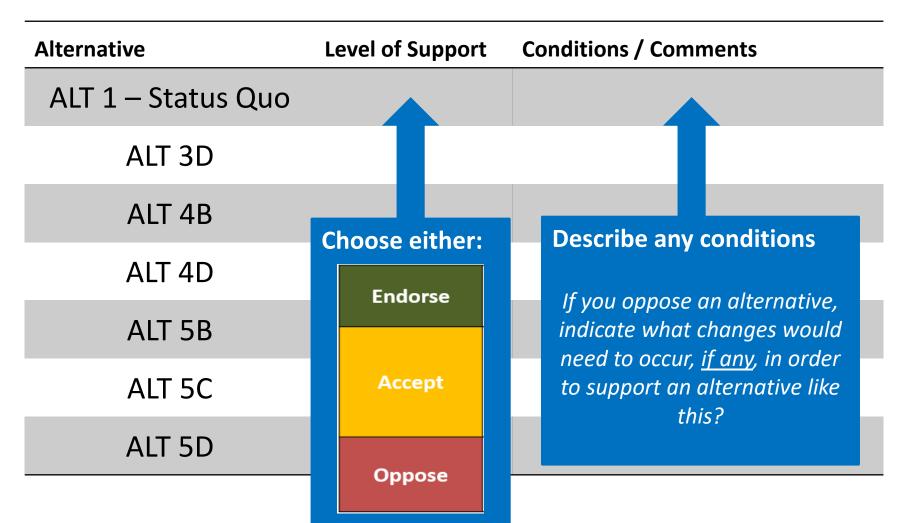

On-Line Direct Ranking Form 1 - AltaViz

Round 2 Flow Alternatives

Ranking Exercises

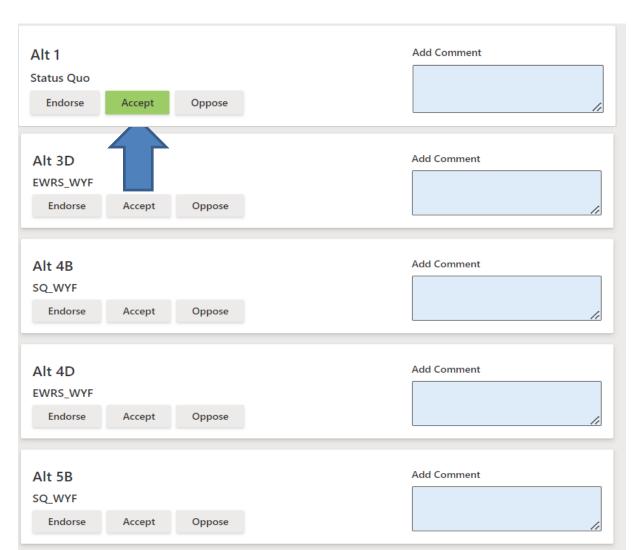
Please fill out Ranking Form

Exercise 2


"Straw Poll on Level of Support"

Main Table members are asked to indicate their level of support and importance for each of the Round 2 Flow Alternatives, according to:

Endorse	I fully endorse this alternative; it meets my expectations and interests over the short term (i.e., as a Phase 1 Flow Altern)
Accept	I accept this alternative; there may be some minor aspects that I am not happy about or maybe even some reservations (which my support may be contingent on]; but I generally I could live with it and be willing to support it over the short term (i.e., as a Phase 1 Flow Alternative)
Oppose	I do not support this alternative; because (please specify) Also, if applicable, indicate what changes would need to occur in order to support an alternative like this?


Exercise 2

"Straw Poll on Level of Support"

Exercise 2

"Straw Poll on Level of Support"

Exercise 2 Straw Poll "Level of Support"

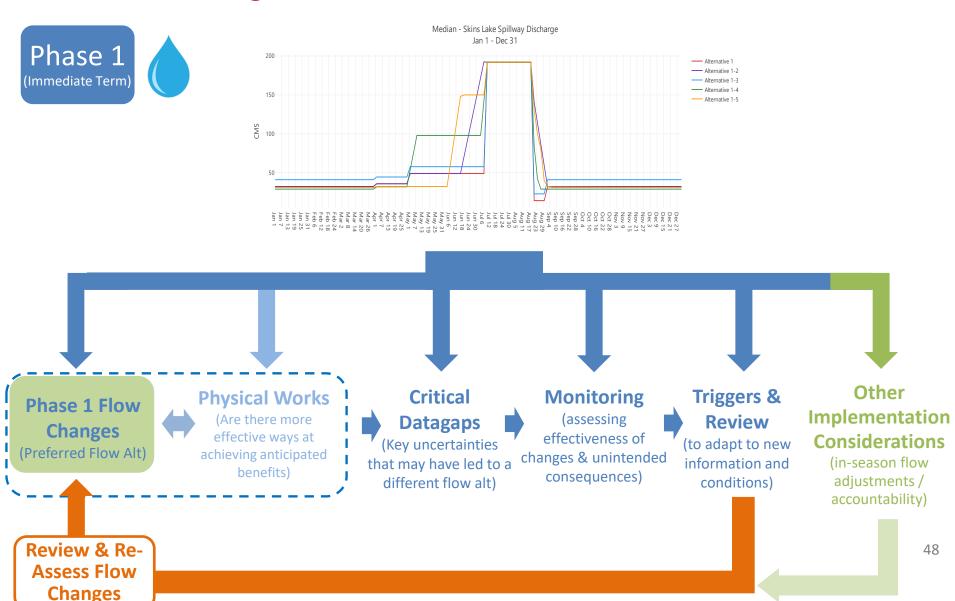
Please fill out Ranking Form

Round 2 Flow Alternatives

Results from Ranking Exercises

• Clayton...

Round 2 Flow Alternatives Improving


 Given the results from the exercises, are there additional revisions and alterations to develop and improve the Flow Options (i.e., Round 3)?

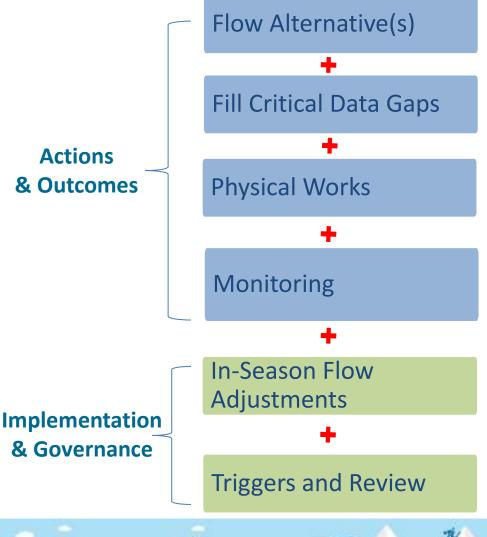
Phase 1 "Package" of Flow Related Recommendations

- Introduction

Working Towards the End of Phase 1

A "Package" of Phase 1 Flow Related Recommendations

"Package" of Phase 1 Flow Related Recommendations



Phase 1 outcome *recommendation*: a "flow alternative package"

- "Improved" Round 1 Alternatives
- Hybrid alternatives targets and minimums
- New alternatives using current water budget
- Additional hybrid alternatives

example Phase 1 "flow alternative package"

example Phase 1 "flow alternative package"

I married

example Phase 1 "package" – actions & outcomes

Flow Alternative(s)

Fill Critical Data Gaps

Physical Works

Monitoring

- To be determined by MT
- E.g., hybrid with base (minimum) flow alt for "normal" years, second alternative (target) for "wet" years
- Side channels improve PM
- Cheslatta turbidity new PM
- Winter flow/ice (habitat/fish/aesthetics) new PM
- Sturgeon flow trials new PM
 - Improved caribou calving ground access (LWD removal)
- Osprey nest relocation
- Side channel excavation
- Direct PM monitoring (e.g., # of days river temp >20C)
- Issue-receptor monitoring (e.g., survival of migrating adult salmon)
- Ecological result monitoring (e.g., number of out-migrating juvenile salmon)

example Phase 1 "package" – implementation & governance

In-Season Flow Adjustments

Triggers and Review

- In-season weather/hydrologic monitoring/modeling
- Communications with community leaders?
- WEI governance team?
- Role of TWG?
- Implementation team?
- Set period (5 years?)
- When data gaps/monitoring provides new information?
- Phase 2?
- Who review?

Data Gaps

PM data gaps:

- Side channels improve PM
- Cheslatta turbidity new PM
- Winter flow/ice (habitat/fish/aesthetics) new PM
- Sturgeon flow trials new PM
- Salmon habitat

Physical Works

Flow Decision

- Improved caribou calving ground access (LWD removal)
- Osprey nest relocation
- Side channel excavation
- Bank stabilization
- Cottonwood planting

- Instream fish habitat
- Side channel fish habitat/reed canary grass scarification
- Flood protection

Physical Works

Footprint

Reservoir erosion

General improvement

- Tributary fish habitat
- Trib temperature
- Trib sediment input
- Trib fish access
- Reed canary grass
- Cheslatta outlet weir

Monitoring

Confirm flow change predictions Confirm Physical Works

- Temperature
- Salmon
- survival of migrating adult salmon
- number of out-migrating juvenile salmon
- Flooding
- Caribou


 Review results of instream fish habitat (railway rails/LWD)



Next Steps

Next Steps

Draft Workplan:

Spare Slides